ﻻ يوجد ملخص باللغة العربية
We demonstrate the trapping of electrons propagating ballistically at far-above-equilibrium energies in GaAs/AlGaAs heterostructures in high magnetic field. We find low-loss transport along a gate-modified mesa edge in contrast to an effective decay of excess energy for the loop around a neighboring, mesa-confined node, enabling high-fidelity trapping. Measuring the full counting statistics via single-charge detection yields the trapping (and escape) probabilities of electrons scattered (and excited) within the node. Energetic and arrival-time distributions of captured electron wave packets are characterized by modulating tunnel barrier transmission.
We report the use of time- and angle-resolved two-photon photoemission to map the bound, unoccupied electronic structure of the weakly coupled graphene/Ir(111) system. The energy, dispersion, and lifetime of the lowest three image-potential states ar
An electric field that builds in the direction against current, known as negative nonlocal resistance, arises naturally in viscous flows and is thus often taken as a telltale of this regime. Here we predict negative resistance for the ballistic regim
We report the observation of commensurability oscillations in an AlAs two-dimensional electron system where two conduction-band valleys with elliptical in-plane Fermi contours are occupied. The Fourier power spectrum of the oscillations shows two fre
Drag of electrons of 1D ballistic nanowire by a nearby 1D beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity $bf V$. The ratio of the drag current to primary current carried by the
Destructive interference of single-electron tunneling between three quantum dots can trap an electron in a coherent superposition of charge on two of the dots. Coupling to external charges causes decoherence of this superposition, and in the presence