ﻻ يوجد ملخص باللغة العربية
This work presents a novel method to generate secret keys shared between a legitimate node pair (Alice and Bob) to safeguard the communication between them from an unauthorized node (Eve). To this end, we exploit the {it reciprocal carrier frequency offset} (CFO) between the legitimate node pair to extract common randomness out of it to generate shared secret keys. The proposed key generation algorithm involves standard steps: the legitimate nodes exchange binary phase-shift keying (BPSK) signals to perform blind CFO estimation on the received signals, and do equi-probable quantization of the noisy CFO estimates followed by information reconciliation--to distil a shared secret key. Furthermore, guided by the Allan deviation curve, we distinguish between the two frequency-stability regimes---when the randomly time-varying CFO process i) has memory, ii) is memoryless; thereafter, we compute the key generation rate for both regimes. Simulation results show that the key disagreement rate decreases exponentially with increase in the signal to noise ratio of the link between Alice and Bob. Additionally, the decipher probability of Eve decreases as soon as either of the two links observed by the Eve becomes more degraded compared to the link between Alice and Bob.
We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the cu
Physical-layer key generation (PKG) establishes cryptographic keys from highly correlated measurements of wireless channels, which relies on reciprocal channel characteristics between uplink and downlink, is a promising wireless security technique fo
This paper presents automatic key generation for long-range wireless communications in low power wide area networks (LPWANs), employing LoRa as a case study. Differential quantization is adopted to extract a high level of randomness. Experiments cond
Multiple carrier-frequency offsets (CFO) arise in a distributed antenna system, where data are transmitted simultaneously from multiple antennas. In such systems the received signal contains multiple CFOs due to mismatch between the local oscillators