ﻻ يوجد ملخص باللغة العربية
We investigate the states of triplet pairing in a candidate nematic superconductor versus typical material parameters, using the mean field theory for two- and three-dimensional tight-binding models with local triplet pairing in the $E_u$ representation. In the two-dimensional model, the system favors the fully gapped chiral state for weaker warping or lower filling level, while a nodal and nematic $Delta_{4x}$ state is favorable for stronger warping or higher filling, with the $d$-vector aligned along the principle axis. In the presence of lattice distortion, relative elongation along one of the principle axes, ${bf a}$, tends to rotate the nematic $d$-vector orthogonal to ${bf a}$, resulting in the nematic $Delta_{4y}$ state at sufficient elongation. Three-dimensionality is seen to suppress the chiral state in favor of the nematic ones. Our results may explain the variety in the probed direction of the $d$-vector in existing experiments.
Recent experiments show strong evidences of nematic triplet superconductivity in doped Bi$_2$Se$_3$ and in Bi$_2$Te$_3$ thin film on a superconducting substrate, but with varying identifications of the direction of the $d$-vector of the triplet that
The field dependence of the specific heat gamma(H) at lower temperatures in Sr2RuO4 is analyzed by solving microscopic Eilenberger equation numerically. We find that systematic gamma(H) behaviors from a concaved sqrt H to a convex H^{alpha} (alpha>1)
In this work, we study even-parity spin-singlet orbital-triplet pairing states for a two-band superconductor. An orbital $mathbf{d}_o(mathbf{k})$-vector is introduced to characterize orbital-dependent pairings, in analogy to the spin $mathbf{d}_s(mat
The theory of superconductor-ferromagnet (S-F) heterostructures with two ferromagnetic layers predicts the generation of a long-range, odd-in-frequency triplet pairing at non-collinear alignment (NCA) of the magnetizations of the F-layers. This tripl
Motivated by a recent angle-resolved thermal conductivity experiment that shows a twofold gap symmetry in the high-field and low-temperature C phase in the heavy-fermion superconductor UPt$_3$, we group-theoretically identify the pairing functions as