ﻻ يوجد ملخص باللغة العربية
Dust temperature is an important property of the interstellar medium (ISM) of galaxies. It is required when converting (sub)millimeter broadband flux to total infrared luminosity (L_IR), and hence star formation rate, in high-z galaxies. However, different definitions of dust temperatures have been used in the literature, leading to different physical interpretations of how ISM conditions change with, e.g., redshift and star formation rate. In this paper, we analyse the dust temperatures of massive (M* > 10^10 Msun) z=2-6 galaxies with the help of high-resolution cosmological simulations from the Feedback in Realistic Environments (FIRE) project. At z~2, our simulations successfully predict dust temperatures in good agreement with observations. We find that dust temperatures based on the peak emission wavelength increase with redshift, in line with the higher star formation activity at higher redshift, and are strongly correlated with the specific star formation rate. In contrast, the mass-weighted dust temperature does not strongly evolve with redshift over z=2-6 at fixed IR luminosity but is tightly correlated with L_IR at fixed z. The mass-weighted temperature is important for accurately estimating the total dust mass. We also analyse an equivalent dust temperature for converting (sub)millimeter flux density to total IR luminosity, and provide a fitting formula as a function of redshift and dust-to-metal ratio. We find that galaxies of higher equivalent (or higher peak) dust temperature (warmer dust) do not necessarily have higher mass-weighted temperatures. A two-phase picture for interstellar dust can explain the different scaling relations of the various dust temperatures.
The underlying distribution of galaxies dust SEDs (i.e., their spectra re-radiated by dust from rest-frame $sim$3$mu$m-3mm) remains relatively unconstrained due to a dearth of FIR/(sub)mm data for large samples of galaxies. It has been claimed in the
We present high-resolution (0.16$$) 870um Atacama Large Millimeter/submillimeter Array (ALMA) imaging of 16 luminous (L_IR ~ 4 x 10^12 L_sun) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. This dust imag
Estimating the temperature and mass of dust in high-$z$ galaxies is essential for discussions of the origin of dust in the early Universe. However, this suffers from limited sampling of the infrared spectral-energy distribution. Here we present an al
A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in th
Obscured AGN represent a significant fraction of the entire AGN population, especially at high redshift (~70% at z=3--5). They are often characterized by the presence of large gas and dust reservoirs that are thought to sustain and possibly obscure v