ﻻ يوجد ملخص باللغة العربية
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at url{https://github.com/IBM/EvolveGCN}.
Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representat
Graph Convolutional Network (GCN) has experienced great success in graph analysis tasks. It works by smoothing the node features across the graph. The current GCN models overwhelmingly assume that the node feature information is complete. However, re
Traditional classification tasks learn to assign samples to given classes based solely on sample features. This paradigm is evolving to include other sources of information, such as known relations between samples. Here we show that, even if addition
Graph convolutional networks (GCNs) have recently received wide attentions, due to their successful applications in different graph tasks and different domains. Training GCNs for a large graph, however, is still a challenge. Original full-batch GCN t
Learning representations for graphs plays a critical role in a wide spectrum of downstream applications. In this paper, we summarize the limitations of the prior works in three folds: representation space, modeling dynamics and modeling uncertainty.