ﻻ يوجد ملخص باللغة العربية
Self-propelled colloids constitute an important class of intrinsically non-equilibrium matter. Typically, such a particle moves ballistically at short times, but eventually changes its orientation, and displays random-walk behavior in the long-time limit. Theory predicts that if the velocity of non-interacting swimmers varies spatially in 1D, $v(x)$, then their density $rho(x)$ satisfies $rho(x) = rho(0)v(0)/v(x)$, where $x = 0$ is an arbitrary reference point. Such a dependence of steady-state $rho(x)$ on the particle dynamics, which was the qualitative basis of recent work demonstrating how to `paint with bacteria, is forbidden in thermal equilibrium. We verify this prediction quantitatively by constructing bacteria that swim with an intensity-dependent speed when illuminated. A spatial light pattern therefore creates a speed profile, along which we find that, indeed, $rho(x)v(x) = mathrm{constant}$, provided that steady state is reached.
In a microrheological set-up a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute
We derive equations of motion for the mean-squared displacement (MSD) of an active Brownian particle (ABP) in a crowded environment modeled by a dense system of passive Brownian particles, and of a passive tracer particle in a dense active-Brownian p
We develop efficient numerical methods for performing many-body Brownian dynamics simulations of a recently-observed fingering instability in an active suspension of colloidal rollers sedimented above a wall [M. Driscoll, B. Delmotte, M. Youssef, S.
Recent studies aimed at investigating artificial analogs of bacterial colonies have shown that low-density suspensions of self-propelled particles confined in two dimensions can assemble into finite aggregates that merge and split, but have a typical
We investigate velocity probability distribution functions (PDF) of sheared hard-sphere suspensions. As observed in our Stokes flow simulations and explained by our single-particle theory, these PDFs can show pronounced deviations from a Maxwell-Bolt