ترغب بنشر مسار تعليمي؟ اضغط هنا

The Enhanced Ferromagnetism of Single-Layer CrX3 (X=Br and I) by Van der Waals Engineering

119   0   0.0 ( 0 )
 نشر من قبل Hongxing Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent experimental discovery of intrinsic ferromagnetism in single-layer CrI3 opens a new avenue to low-dimensional spintronics. However, the low Curie temperature Tc=45 K is still a large obstacle to its realistic device application. In this work, we demonstrate that the Tc and magnetic moment of CrX3(X=Br, I) can be enhanced simultaneously by coupling them to buckled two-dimensional Mene (M=Si, Ge) to form magnetic van der Waals (vdW) heterostructures. Our first-principles calculations reveal that n-doping of CrX3, induced by a significant spin-dependent interlayer charge transfer from Mene, is responsible for its drastic enhancement of Tc and magnetic moment. Furthermore, the diversified electronic properties including halfmetallicity and semi-conductivity with configuration dependent energy gap are also predicted in this novel vdW heterostructure, implying their broad potential applications in spintronics. Our study suggests that the vdW engineering may be an efficient way to tune the magnetic properties of 2D magnets, and the Mene_CrX3 magnetic vdW heterostructures are wonderful candidates in spintronics and nanoelectronics device.



قيم البحث

اقرأ أيضاً

The research on layered van der Waals (vdW) magnets is rapidly progressing owing to exciting fundamental science and potential applications. In bulk crystal form, CrCl3 is a vdW antiferromagnet with in-plane ferromagnetic ordering below 17 K, and CrI 3 is a vdW ferromagnet below 61 K. Here, we report on the electron spin resonance (ESR) properties of CrCl3 and CrI3 single crystals upon photo-excitation in the visible range. We noticed remarkable changes in the ESR spectra upon illumination. In the case of CrCl3, at 10 K, the ESR signal is shifted from g = 1.492 (dark) to 1.661 (light), line width increased from 376 to 506 Oe, and the signal intensity is reduced by 1.5 times. Most interestingly, the observed change in the signal intensity is reversible when the light is cycled on/off. We observed almost no change in the ESR spectral parameters in the paramagnetic phase (>20 K) upon illumination. Upon photo-excitation of CrI3, the ESR signal intensity is reduced by 1.9 times; the g-value increased from 1.956 to 1.990; the linewidth increased from 1170 to 1260 Oe at 60 K. These findings are discussed by taking into account the skin depth, the slow relaxation mechanism and the appearance of low-symmetry fields at the photo-generated Cr2+ Jahn-Teller centers. Such an increase in the g-value as a result of photo-generated Cr2+ ions is further supported by our many-body wavefunction calculations. This work has the potential to extend to monolayer vdWs magnets by combining ESR spectroscopy with optical excitation and detection.
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isola ted CrI3 nanoplatelets have lateral dimensions of ~25 nm and ensemble thicknesses of only ~4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering in these nanoplatelets with Curie temperatures similar to those observed in bulk CrI3, despite the strong spatial confinement. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets and associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of laterally confined 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.
225 - M. Blei , J.L. Lado , Q. Song 2020
Spontaneous magnetic order is a routine instance in three-dimensional (3D) materials but for a long time, it remained elusive in the 2D world. Recently, the first examples of (stand-alone) 2D van der Waals (vdW) crystals with magnetic order, either a ntiferromagnetic or ferromagnetic, have been reported. In this review, we describe the state of the art of the nascent field of magnetic 2D materials focusing on synthesis, engineering, and theory aspects. We also discuss challenges and some of the many different promising directions for future work.
The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these con cepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrI3 and CrCl3, finding that bilayers of CrI3 and CrCl3 have Youngs moduli of 62.1 GPa and 43.4 GPa, with the highest sustained strain of 6.09% and 6.49% and breaking strengths of 3.6 GPa and 2.2 GPa, respectively. Both the elasticity and strength of the two materials decrease with increased thickness, which is attributed to a weak interlayer interaction that enables interlayer sliding under low levels of applied load. The mechanical properties observed in the few-layer chromium trihalide crystals provide evidence of outstanding plasticity in these materials, which is qualitatively demonstrated in their bulk counterparts. This study will contribute to various applications of the van der Waals magnetic materials, especially for their use in magnetostrictive and flexible devices.
Trions, quasi-particles consisting of two electrons combined with one hole or of two holes with one electron, have recently been observed in transition metal dichalcogenides (TMDCs) and drawn increasing attention due to potential applications of thes e materials in light-emitting diodes, valleytronic devices as well as for being a testbed for understanding many-body phenomena. Therefore, it is important to enhance the trion emission and its stability. In this study, we construct a MoSe2/FePS3 van der Waals heterostructure (vdWH) with type-I band alignment, which allows for carriers injection from FePS3 to MoSe2. At low temperatures, the neutral exciton (X0) emission in this vdWH is almost completely suppressed. The ITrion/Ix0 intensity ratio increases from 0.44 in a single MoSe2 monolayer to 20 in this heterostructure with the trion charging state changing from negative in the monolayer to positive in the heterostructure. The optical pumping with circularly polarized light shows a 14% polarization for the trion emission in MoSe2/FePS3. Moreover, forming such type-I vdWH also gives rise to a 20-fold enhancement of the room temperature photoluminescence from monolayer MoSe2. Our results demonstrate a novel approach to convert excitons to trions in monolayer 2D TMDCs via interlayer doping effect using type-I band alignment in vdWH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا