We present results from a parsec-scale jet kinematics study of 409 bright radio-loud AGNs based on 15 GHz VLBA data obtained between 1994 August 31 and 2016 December 26 as part of the 2cm VLBA survey and MOJAVE programs. We tracked 1744 individual bright features in 382 jets over at least five epochs. A majority (59%) of the best-sampled jet features showed evidence of accelerated motion at the >3sigma level. Although most features within a jet typically have speeds within ~40% of a characteristic median value, we identified 55 features in 42 jets that had unusually slow pattern speeds, nearly all of which lie within 4 pc (100 pc de-projected) of the core feature. Our results combined with other speeds from the literature indicate a strong correlation between apparent jet speed and synchrotron peak frequency, with the highest jet speeds being found only in low-peaked AGNs. Using Monte Carlo simulations, we find best fit parent population parameters for a complete sample of 174 quasars above 1.5 Jy at 15 GHz. Acceptable fits are found with a jet population that has a simple unbeamed power law luminosity function incorporating pure luminosity evolution, and a power law Lorentz factor distribution ranging from 1.25 to 50 with slope -1.4 +- 0.2. The parent jets of the brightest radio quasars have a space density of 261 +- 19 Gpc$^{-3}$ and unbeamed 15 GHz luminosities above ~$10^{24.5}$ W/Hz, consistent with FR II class radio galaxies.