ﻻ يوجد ملخص باللغة العربية
We propose the thick-disc model of Gu et al. 2016 to interpret the transition between soft ultraluminous state (SUL) and supersoft ultraluminous (SSUL) state in NGC 247. As accretion rate increases, the inner disc will puff up and act as shield to block the innermost X-ray emission regions and absorb both soft and hard X-ray photons. The absorbed X-ray emission will be re-radiated as a much softer blackbody X-ray spectrum. Hence NGC 247 shows flux dips in the hard X-ray band and transits from the SUL state to the SSUL state. The $sim 200$s transition timescale can be explained by the viscous timescale. According to our model, the inner disc in the super-soft state is thicker and has smaller viscous timescale than in the soft state. X-ray flux variability, which is assumed to be driven by accretion rate fluctuations, might be viscous time-scale invariant. Therefore, in the SSUL state, NGC 247 is more variable. The bolometric luminosity is saturated in the thick disc; the observed radius-temperature relation can therefore be naturally explained.
Soft Ultra-Luminous X-ray (ULXs) sources are a subclass of the ULXs that can switch from a supersoft spectral state, where most of the luminosity is emitted below 1 keV, to a soft spectral state with significant emission above 1 keV. In a few systems
(Abridged) We have used the atmospheric parameters, [alpha/Fe] abundances and radial velocities, determined from the Gaia-ESO Survey GIRAFFE spectra of FGK-type stars (iDR1), to provide a chemo-kinematical characterisation of the disc stellar populat
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a
Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features; (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band hav
We search for LBV stars in galaxies outside the Local Group. Here we present a study of two bright $Halpha$ sources in the NGC 247 galaxy. Object j004703.27-204708.4 ($M_V=-9.08 pm 0.15^m$) shows the spectral lines typical for well-studied LBV stars: