ﻻ يوجد ملخص باللغة العربية
We calculate the power spectrum of the stochastic gravitational wave (GW) background expected from kink-kink collisions on infinite cosmic strings. Intersections in the cosmic string network continuously generate kinks, which emit GW bursts by their propagation on curved strings as well as by their collisions. First, we show that the GW background from kink-kink collisions is much larger than the one from propagating kinks at high frequencies because of the higher event rate. We then propose a method to take into account the energy loss of the string network by GW emission as well as the decrease of kink number due to the GW backreaction. We find that, even though these effects reduce the amplitude of the GW background, we can obtain a constraint on the string tension $Gmulesssim 2 times 10^{-7}$ using the current upper bound on the GW background by Advanced-LIGO, which is as competitive as the constraint from cusps on string loops.
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper
Global cosmic strings are generically predicted in particle physics beyond the Standard Model, e.g., a post-inflationary global $U(1)$ symmetry breaking which may associate with axion-like dark matter. We demonstrate that although subdominant to Gold
A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of G
We combine new analysis of the stochastic gravitational wave background to be expected from cosmic strings with the latest pulsar timing array (PTA) limits to give an upper bound on the energy scale of the possible cosmic string network, $Gmu < 1.5ti
We investigate the effect of the stochastic gravitational wave (GW) background produced by kinks on infinite cosmic strings, whose spectrum was derived in our previous work, on the B-mode power spectrum of the cosmic microwave background (CMB) anisot