ترغب بنشر مسار تعليمي؟ اضغط هنا

New high-dimensional examples of ballistic random walks in random environment

113   0   0.0 ( 0 )
 نشر من قبل Ryoki Fukushima
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give new criteria for ballistic behavior of random walks in random environment which are perturbations of the simple symmetric random walk on $mathbb Z^d$ in dimensions $dge 4$. Our results extend those of Sznitman [Ann. Probab. 31, no. 1, 285-322 (2003)] and the recent ones of Ramirez and Saglietti [Preprint, arXiv:1808.01523], and allow us to exhibit new examples in dimensions $dge 4$ of ballistic random walks which do not satisfy Kalikows condition. Our criteria implies ballisticity whenever the average of the local drift of the walk is not too small compared with an appropriate moment of the centered environment. The proof relies on a concentration inequality of Boucheron et al. [Ann. Probab. 33, no. 2, 514-560 (2005)].



قيم البحث

اقرأ أيضاً

We consider transient one-dimensional random walks in random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of valleys of height $log t$. In t he quenched setting, we also sharply estimate the distribution of the walk at time $t$.
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st rong local survival regimes coincide for BRWRE and that they can be characterized with the spectral radius of the first moment matrix of the process. These results are generalizations of the classification of BRWRE in recurrent and transient regimes. Our main result is a characterization of global survival that is given in terms of Lyapunov exponents of an infinite product of i.i.d. $2times 2$ random matrices.
171 - Yueyun Hu , Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro ws as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
The integer points (sites) of the real line are marked by the positions of a standard random walk. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the standard random walk are supported b y a bounded set, have finite or infinite mean, respectively. Focussing on the case of strong sparsity we consider a nearest neighbor random walk on the set of integers having jumps $pm 1$ with probability $1/2$ at every nonmarked site, whereas a random drift is imposed at every marked site. We prove new distributional limit theorems for the so defined random walk in a strongly sparse random environment, thereby complementing results obtained recently in Buraczewski et al. (2018+) for the case of moderate sparsity and in Matzavinos et al. (2016) for the case of weak sparsity. While the random walk in a strongly sparse random environment exhibits either the diffusive scaling inherent to a simple symmetric random walk or a wide range of subdiffusive scalings, the corresponding limit distributions are non-stable.
We consider a one dimensional random walk in random environment that is uniformly biased to one direction. In addition to the transition probability, the jump rate of the random walk is assumed to be spatially inhomogeneous and random. We study the p robability that the random walk travels slower than its typical speed and determine its decay rate asymptotic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا