ترغب بنشر مسار تعليمي؟ اضغط هنا

ABI Neural Ensemble Model for Gender Prediction Adapt Bar-Ilan Submission for the CLIN29 Shared Task on Gender Prediction

293   0   0.0 ( 0 )
 نشر من قبل Dimitar Shterionov
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present our system for the CLIN29 shared task on cross-genre gender detection for Dutch. We experimented with a multitude of neural models (CNN, RNN, LSTM, etc.), more traditional models (SVM, RF, LogReg, etc.), different feature sets as well as data pre-processing. The final results suggested that using tokenized, non-lowercased data works best for most of the neural models, while a combination of word clusters, character trigrams and word lists showed to be most beneficial for the majority of the more traditional (that is, non-neural) models, beating features used in previous tasks such as n-grams, character n-grams, part-of-speech tags and combinations thereof. In contradiction with the results described in previous comparable shared tasks, our neural models performed better than our best traditional approaches with our best feature set-up. Our final model consisted of a weighted ensemble model combining the top 25 models. Our final model won both the in-domain gender prediction task and the cross-genre challenge, achieving an average accuracy of 64.93% on the in-domain gender prediction task, and 56.26% on cross-genre gender prediction.



قيم البحث

اقرأ أيضاً

Transformer models have shown impressive performance on a variety of NLP tasks. Off-the-shelf, pre-trained models can be fine-tuned for specific NLP classification tasks, reducing the need for large amounts of additional training data. However, littl e research has addressed how much data is required to accurately fine-tune such pre-trained transformer models, and how much data is needed for accurate prediction. This paper explores the usability of BERT (a Transformer model for word embedding) for gender prediction on social media. Forensic applications include detecting gender obfuscation, e.g. males posing as females in chat rooms. A Dutch BERT model is fine-tuned on different samples of a Dutch Twitter dataset labeled for gender, varying in the number of tweets used per person. The results show that finetuning BERT contributes to good gender classification performance (80% F1) when finetuned on only 200 tweets per person. But when using just 20 tweets per person, the performance of our classifier deteriorates non-steeply (to 70% F1). These results show that even with relatively small amounts of data, BERT can be fine-tuned to accurately help predict the gender of Twitter users, and, consequently, that it is possible to determine gender on the basis of just a low volume of tweets. This opens up an operational perspective on the swift detection of gender.
As biological gender is one of the aspects of presenting individual human, much work has been done on gender classification based on people names. The proposals for English and Chinese languages are tremendous; still, there have been few works done f or Vietnamese so far. We propose a new dataset for gender prediction based on Vietnamese names. This dataset comprises over 26,000 full names annotated with genders. This dataset is available on our website for research purposes. In addition, this paper describes six machine learning algorithms (Support Vector Machine, Multinomial Naive Bayes, Bernoulli Naive Bayes, Decision Tree, Random Forrest and Logistic Regression) and a deep learning model (LSTM) with fastText word embedding for gender prediction on Vietnamese names. We create a dataset and investigate the impact of each name component on detecting gender. As a result, the best F1-score that we have achieved is up to 96% on LSTM model and we generate a web API based on our trained model.
Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the worlds languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learn ing and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.
We describe the ADAPT system for the 2020 IWPT Shared Task on parsing enhanced Universal Dependencies in 17 languages. We implement a pipeline approach using UDPipe and UDPipe-future to provide initial levels of annotation. The enhanced dependency gr aph is either produced by a graph-based semantic dependency parser or is built from the basic tree using a small set of heuristics. Our results show that, for the majority of languages, a semantic dependency parser can be successfully applied to the task of parsing enhanced dependencies. Unfortunately, we did not ensure a connected graph as part of our pipeline approach and our competition submission relied on a last-minute fix to pass the validation script which harmed our official evaluation scores significantly. Our submission ranked eighth in the official evaluation with a macro-averaged coarse ELAS F1 of 67.23 and a treebank average of 67.49. We later implemented our own graph-connecting fix which resulted in a score of 79.53 (language average) or 79.76 (treebank average), which would have placed fourth in the competition evaluation.
Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect peoples gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality. The implementation of the proposed framework is released.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا