ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Density-Functional Theory for Quantum Chemistry

196   0   0.0 ( 0 )
 نشر من قبل Jeremy Coe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. P. Coe




اسأل ChatGPT حول البحث

We propose a lattice density-functional theory for {it ab initio} quantum chemistry or physics as a route to an efficient approach that approximates the full configuration interaction energy and orbital occupations for molecules with strongly-correlated electrons. We build on lattice density-functional theory for the Hubbard model by deriving Kohn-Sham equations for a reduced then full quantum chemistry Hamiltonian, and demonstrate the method on the potential energy curves for the challenging problem of modelling elongating bonds in a linear chain of six hydrogen atoms. Here the accuracy of the Bethe-ansatz local-density approximation is tested for this quantum chemistry system and we find that, despite this approximate functional being designed for the Hubbard model, the shapes of the potential curves generally agree with the full configuration interaction results. Although there is a discrepancy for very stretched bonds, this is lower than when using standard density-functional theory with the local-density approximation.



قيم البحث

اقرأ أيضاً

Quantum embedding based on the (one-electron reduced) density matrix is revisited by means of the unitary Householder transformation. While being exact and equivalent to (but formally simpler than) density matrix embedding theory (DMET) in the non-in teracting case, the resulting Householder transformed density matrix functional embedding theory (Ht-DMFET) preserves, by construction, the single-particle character of the bath when electron correlation is introduced. In Ht-DMFET, the projected impurity+bath clusters Hamiltonian (from which approximate local properties of the interacting lattice can be extracted) becomes an explicit functional of the density matrix. In the spirit of single-impurity DMET, we consider in this work a closed (two-electron) cluster constructed from the full-size non-interacting density matrix. When the (Householder transformed) interaction on the bath site is taken into account, per-site energies obtained for the half-filled one-dimensional Hubbard lattice match almost perfectly the exact Bethe Ansatz results in all correlation regimes. In the strongly correlated regime, the results deteriorate away from half-filling. This can be related to the electron number fluctuations in the (two-site) cluster which are not described neither in Ht-DMFET nor in regular DMET. As expected, the per-site energies dramatically improve when increasing the number of embedded impurities. Formal connections with density/density matrix functional theories have been briefly discussed and should be explored further. Work is currently in progress in this direction.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of n ew classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs. This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
We present a mean field theory for excited states that is broadly analogous to ground state Hartree-Fock theory. Like Hartree-Fock, our approach is deterministic, state-specific, applies a variational principle to a minimally correlated ansatz, produ ces energy stationary points, relaxes the orbital basis, has a Fock-build cost-scaling, and can serve as the foundation for correlation methods such as perturbation theory and coupled cluster theory. To emphasize this last point, we pair our mean field approach with an excited state analogue of second order Moller-Plesset theory and demonstrate that in water, formaldehyde, neon, and stretched lithium fluoride, the resulting accuracy far exceeds that of configuration interaction singles and rivals that of equation of motion coupled cluster.
Based on recent progress on fermionic exchange symmetry we propose a way to develop new functionals for reduced density matrix functional theory. For some settings with an odd number of electrons, by assuming saturation of the inequalities stemming f rom the generalized Pauli principle, the many-body wave-function can be written explicitly in terms of the natural occupation numbers and natural orbitals. This leads to an expression for the two-particle density matrix and therefore for the correlation energy functional. This functional was then tested for a three-electron Hubbard model where it showed excellent performance both in the weak and strong correlation regimes.
Most realistic calculations of moderately correlated materials begin with a ground-state density functional theory (DFT) calculation. While Kohn-Sham DFT is used in about 40,000 scientific papers each year, the fundamental underpinnings are not widel y appreciated. In this chapter, we analyze the inherent characteristics of DFT in their simplest form, using the asymmetric Hubbard dimer as an illustrative model. We begin by working through the core tenets of DFT, explaining what the exact ground-state density functional yields and does not yield. Given the relative simplicity of the system, almost all properties of the exact exchange-correlation functional are readily visualized and plotted. Key concepts include the Kohn-Sham scheme, the behavior of the XC potential as correlations become very strong, the derivative discontinuity and the difference between KS gaps and true charge gaps, and how to extract optical excitations using time-dependent DFT. By the end of this text and accompanying exercises, the reader will improve their ability to both explain and visualize the concepts of DFT, as well as better understand where others may go wrong.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا