ﻻ يوجد ملخص باللغة العربية
Answerer in Questioners Mind (AQM) is an information-theoretic framework that has been recently proposed for task-oriented dialog systems. AQM benefits from asking a question that would maximize the information gain when it is asked. However, due to its intrinsic nature of explicitly calculating the information gain, AQM has a limitation when the solution space is very large. To address this, we propose AQM+ that can deal with a large-scale problem and ask a question that is more coherent to the current context of the dialog. We evaluate our method on GuessWhich, a challenging task-oriented visual dialog problem, where the number of candidate classes is near 10K. Our experimental results and ablation studies show that AQM+ outperforms the state-of-the-art models by a remarkable margin with a reasonable approximation. In particular, the proposed AQM+ reduces more than 60% of error as the dialog proceeds, while the comparative algorithms diminish the error by less than 6%. Based on our results, we argue that AQM+ is a general task-oriented dialog algorithm that can be applied for non-yes-or-no responses.
Question answering and conversational systems are often baffled and need help clarifying certain ambiguities. However, limitations of existing datasets hinder the development of large-scale models capable of generating and utilising clarification que
To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The Bounding Boxes in Text Transformer (B2T2) also leverages referential information binding words to
Multi-modal dialog modeling is of growing interest. In this work, we propose frameworks to resolve a specific case of multi-modal dialog generation that better mimics multi-modal dialog generation in the real world, where each dialog turn is associat
Text-based Question Generation (QG) aims at generating natural and relevant questions that can be answered by a given answer in some context. Existing QG models suffer from a semantic drift problem, i.e., the semantics of the model-generated question
Scene-aware dialog systems will be able to have conversations with users about the objects and events around them. Progress on such systems can be made by integrating state-of-the-art technologies from multiple research areas including end-to-end dia