On the hardness of computing an average curve


الملخص بالإنكليزية

We study the complexity of clustering curves under $k$-median and $k$-center objectives in the metric space of the Frechet distance and related distance measures. Building upon recent hardness results for the minimum-enclosing-ball problem under the Frechet distance, we show that also the $1$-median problem is NP-hard. Furthermore, we show that the $1$-median problem is W[1]-hard with the number of curves as parameter. We show this under the discrete and continuous Frechet and Dynamic Time Warping (DTW) distance. This yields an independent proof of an earlier result by Bulteau et al. from 2018 for a variant of DTW that uses squared distances, where the new proof is both simpler and more general. On the positive side, we give approximation algorithms for problem variants where the center curve may have complexity at most $ell$ under the discrete Frechet distance. In particular, for fixed $k,ell$ and $varepsilon$, we give $(1+varepsilon)$-approximation algorithms for the $(k,ell)$-median and $(k,ell)$-center objectives and a polynomial-time exact algorithm for the $(k,ell)$-center objective.

تحميل البحث