ﻻ يوجد ملخص باللغة العربية
Small craters of the lunar maria are observed to be in a state of equilibrium, in which the rate of production of new craters is, on average, equal to the rate of destruction of old craters. Crater counts of multiple lunar terrains over decades consistently show that the equilibrium cumulative size-frequency distribution (SFD) per unit area of small craters of radius >r is proportional r^(-2), and that the total crater density is a few percent of so-called geometric saturation, which is the maximum theoretical packing density of circular features. While it has long been known that the primary crater destruction mechanism for these small craters is steady diffusive degradation, there are few quantitative constraints on the processes that determine the degradation rate of meter to kilometer scale lunar surface features. Here we combine analytical modeling with a Monte Carlo landscape evolution code known as the Cratered Terrain Evolution Model to place constraints on which processes control the observed equilibrium size-frequency distribution for small craters. We find that the impacts by small distal ejecta fragments, distributed in spatially heterogeneous rays, is the largest contributor to the diffusive degradation which controls the equilibrium SFD of small craters. Other degradation or crater removal mechanisms, such cookie cutting, ejecta burial, seismic shaking, and micrometeoroid bombardment, likely contribute very little to the diffusive topographic degradation of the lunar maria at the meter scale and larger.
We present a study on the relationship between the ratio of the depth of a crater to its diameter and the diameter for lunar craters both on the maria and on the highlands. We consider craters younger than 1.1 billion years in age, i.e. of Copernican
Planetary impact events eject large volumes of surface material. Crater excavation processes are difficult to study, and in particular the details of individual ejecta fragments are not well understood. A related, enduring issue in planetary mapping
We use numerical modeling to investigate the combined effects of impact velocity and acoustic fluidization on lunar craters in the simple-to-complex transition regime. To investigate the full scope of the problem, we employed the two widely adopted B
It has been hypothesized that the impactors that created the majority of the observable craters on the ancient lunar highlands were derived from the main asteroid belt in such a way that preserved their size-frequency distribution. A more limited ver
We compare the number of lunar craters larger than 15 km across and younger than 1.1 Ga to the estimates of the number of craters that could have been formed for 1.1 Ga if the number of near-Earth objects and their orbital elements during that time w