ﻻ يوجد ملخص باللغة العربية
Due to their possibility to encode information and realize low-energy-consumption quantum devices, control and manipulation of the valley degree of freedom have been widely studied in electronic systems. In contrast, the phononic counterpart--valley phononics--has been largely unexplored, despite the importance in both fundamental science and practical applications. In this work, we demonstrate that the control of valleys is also applicable for phonons in graphene by using a grain boundary. In particular, perfect valley filtering effect is observed at certain energy windows for flexural modes and found to be closely related to the anisotropy of phonon valley pockets. Moreover, valley filtering may be further improved using Fano-like resonance. Our findings reveal the possibility of valley phononics, paving the road towards purposeful phonon engineering and future valley phononics.
We propose a device in which a sheet of graphene is coupled to a Weyl semimetal, allowing for the physical access to the study of tunneling from two-dimensional to three dimensional massless Dirac fermions. Due to the reconstructed band structure, we
The existence of two-inequivalent valleys in the band structure of graphene has motivated the search of mechanisms that allow their separation and control for potential device applications. Among the several schemes proposed in the literature, strain
Atomically precise tailoring of graphene can enable unusual transport pathways and new nanometer-scale functional devices. Here we describe a recipe for the controlled production of highly regular 5-5-8 line defects in graphene by means of simultaneo
The development of valleytronics demands long-range electronic transport with preserved valley index, a degree of freedom similar to electron spin. A promising structure for this end is a topological one-dimensional (1D) channel formed in bilayer gra
Graphene subject to high levels of shear strain leads to strong pseudo-magnetic fields resulting in the emergence of Landau levels. Here we show that, with modest levels of strain, graphene can also sustain a classical valley hall effect (VHE) that c