ﻻ يوجد ملخص باللغة العربية
In the search for the building blocks of life, nitrogen-bearing molecules are of particular interest since nitrogen-containing bonds are essential for the linking of amino acids and ultimately the formation of larger biological structures. The elusive molecule methylamine (CH$_3$NH$_2$) is thought to be a key pre-biotic species but has so far only been securely detected in the giant molecular cloud Sgr B2. We identify CH$_3$NH$_2$ and other simple nitrogen-bearing species towards three hot cores in NGC 6334I. Column density ratios are derived in order to investigate the relevance of the individual species as precursors of biotic molecules. Observations obtained with ALMA were used to study transitions of CH$_3$NH$_2$, CH$_2$NH, NH$_2$CHO, and the $^{13}$C- and $^{15}$N-methyl cyanide (CH$_3$CN) isotopologues. Column densities are derived for each species assuming LTE and excitation temperatures in the range 220-340 K for CH$_3$NH$_2$, 70-110 K for the CH$_3$CN isotopologues, and 120-215 K for NH$_2$CHO and CH$_2$NH. We report the first detections of CH$_3$NH$_2$ towards NGC 6334I with column density ratios with respect to CH$_3$OH of 5.9$times$10$^{-3}$, 1.5$times$10$^{-3}$, and 5.4$times$10$^{-4}$ for the three hot cores MM1, MM2, and MM3, respectively. These values are slightly lower than the values derived for Sgr B2 but higher by more than order of magnitude as compared with the values derived for the low-mass protostar IRAS 16293-2422B. The detections of CH$_3$NH$_2$ in the hot cores of NGC 6334I hint that CH$_3$NH$_2$ is generally common in the interstellar medium, albeit high-sensitivity observations are essential for its detection. The good agreement between model predictions of CH$_3$NH$_2$ ratios and the observations towards NGC 6334I indicate a main formation pathway via radical recombination on grain surfaces.
We present results from a time dependent gas phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC_3N has been observed in hot cores, the longer chained species, HC_5N, HC_7N, and HC_9N have not
The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiat
We have observed several emission lines of two Nitrogen-bearing (C2H5CN and C2H3CN) and two Oxygen-bearing (CH3OCH3 and HCOOCH3) molecules towards a sample of well-known hot molecular cores (HMCs) in order to check whether the chemical differentiatio
We have observed the Class I protostellar source Elias 29 with Atacama Large Millimeter/submillimeter Array (ALMA). We have detected CS, SO, $^{34}$SO, SO$_2$, and SiO line emissions in a compact component concentrated near the protostar and a ridge
Chemical composition of the massive cores forming high-mass stars can put some constrains on the time scale of the massive star formation: sulphur chemistry is of specific interest due to its rapid evolution in warm gas and because the abundance of s