ﻻ يوجد ملخص باللغة العربية
Global sensitivity analysis (GSA) of numerical simulators aims at studying the global impact of the input uncertainties on the output. To perform the GSA, statistical tools based on inputs/output dependence measures are commonly used. We focus here on dependence measures based on reproducing kernel Hilbert spaces: the Hilbert-Schmidt Independence Criterion denoted HSIC. Sometimes, the probability distributions modeling the uncertainty of inputs may be themselves uncertain and it is important to quantify the global impact of this uncertainty on GSA results. We call it here the second-level global sensitivity analysis (GSA2). However, GSA2, when performed with a double Monte Carlo loop, requires a large number of model evaluations which is intractable with CPU time expensive simulators. To cope with this limitation, we propose a new statistical methodology based on a single Monte Carlo loop with a limited calculation budget. Firstly, we build a unique sample of inputs from a well chosen probability distribution and the associated code outputs are computed. From this inputs/output sample, we perform GSA for various assumed probability distributions of inputs by using weighted HSIC measures estimators. Statistical properties of these weighted esti-mators are demonstrated. Finally, we define 2 nd-level HSIC-based measures between the probability distributions of inputs and GSA results, which constitute GSA2 indices. The efficiency of our GSA2 methodology is illustrated on an analytical example, thereby comparing several technical options. Finally, an application to a test case simulating a severe accidental scenario on nuclear reactor is provided.
Sensitivity indices are commonly used to quantity the relative inuence of any specic group of input variables on the output of a computer code. In this paper, we focus both on computer codes the output of which is a cumulative distribution function a
The development of global sensitivity analysis of numerical model outputs has recently raised new issues on 1-dimensional Poincare inequalities. Typically two kind of sensitivity indices are linked by a Poincare type inequality, which provide upper b
The article presents new sup-sums principles for integral F-divergence for arbitrary convex function F and arbitrary (not necessarily positive and absolutely continuous) measures. As applications of these results we derive the corresponding sup-sums
Consider a standard white Wishart matrix with parameters $n$ and $p$. Motivated by applications in high-dimensional statistics and signal processing, we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the $m times m$ pr
We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random no