ﻻ يوجد ملخص باللغة العربية
The discovery of fast radio bursts (FRBs) about a decade ago opened up new possibilities for probing the ionization history of the Intergalactic Medium (IGM). In this paper we study the use of FRBs for tracing the epoch of HeII reionization, using simulations of their dispersion measures. We model dispersion measure contributions from the Milky Way, the IGM (homogeneous and inhomogeneous) and a possible host galaxy as a function of redshift and star formation rate. We estimate the number of FRBs required to distinguish between a model of the Universe in which helium reionization occurred at z = 3 from a model in which it occurred at z = 6 using a 2-sample Kolmogorov-Smirnoff test. We find that if the IGM is homogeneous >1100 FRBs are needed and that an inhomogeneous model in which traversal of the FRB pulse through galaxy halos increases the number of FRBs modestly, to >1600. We also find that to distinguish between a reionization that occurred at z = 3 or z = 3.5 requires ~5700 FRBs in the range 3 < z < 5.
Context. The increased detection rate of Fast Radio Bursts (FRBs) makes it likely to get samples of sizes $mathcal{O}(10^2)$ to $mathcal{O}(10^3)$ in the near future. Because of their extragalactic origin can help us in understanding the epoch of hel
In 2007, a very bright radio pulse was identified in the archival data of the Parkes Telescope in Australia, marking the beginning of a new research branch in astrophysics. In 2013, this kind of millisecond bursts with extremely high brightness tempe
To determine the epoch of reionization precisely and to reveal the property of inhomogeneous reionization are some of the most important topics of modern cosmology. Existing methods to investigate reionization which use cosmic microwave background, L
Fast Radio Bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. In order to understand the phenomenon that emits these pulses, targeted and untargeted searches have been performed for multi-wavelength counterparts,
We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. FRBs occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times l