ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dependently Typed Library for Static Information-Flow Control in Idris

187   0   0.0 ( 0 )
 نشر من قبل Simon Oddershede Gregersen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Safely integrating third-party code in applications while protecting the confidentiality of information is a long-standing problem. Pure functional programming languages, like Haskell, make it possible to enforce lightweight information-flow control through libraries like MAC by Russo. This work presents DepSec, a MAC inspired, dependently typed library for static information-flow control in Idris. We showcase how adding dependent types increases the expressiveness of state-of-the-art static information-flow control libraries and how DepSec matches a special-purpose dependent information-flow type system on a key example. Finally, we show novel and powerful means of specifying statically enforced declassification policies using dependent types.



قيم البحث

اقرأ أيضاً

We study a dependently typed extension of a multi-stage programming language `a la MetaOCaml, which supports quasi-quotation and cross-stage persistence for manipulation of code fragments as first-class values and an evaluation construct for executio n of programs dynamically generated by this code manipulation. Dependent types are expected to bring to multi-stage programming enforcement of strong invariant -- beyond simple type safety -- on the behavior of dynamically generated code. An extension is, however, not trivial because such a type system would have to take stages of types -- roughly speaking, the number of surrounding quotations -- into account. To rigorously study properties of such an extension, we develop $lambda^{MD}$, which is an extension of Hanada and Igarashis typed calculus $lambda^{triangleright%} $ with dependent types, and prove its properties including preservation, confluence, strong normalization for full reduction, and progress for staged reduction. Motivated by code generators that generate code whose type depends on a value from outside of the quotations, we argue the significance of cross-stage persistence in dependently typed multi-stage programming and certain type equivalences that are not directly derived from reduction rules.
Session Types offer a typing discipline that allows protocol specifications to be used during type-checking, ensuring that implementations adhere to a given specification. When looking to realise global session types in a dependently typed language c are must be taken that values introduced in the description are used by roles that know about the value. We present Sessions, a Resource Dependent EDSL for describing global session descriptions in the dependently typed language Idris. As we construct session descriptions the values parameterising the EDSLs type keeps track of roles and messages they have encountered. We can use this knowledge to ensure that message values are only used by those who know the value. Sessions supports protocol descriptions that are computable, composable, higher-order, and value-dependent. We demonstrate Sessions expressiveness by describing the TCP Handshake, a multi-modal server providing echo and basic arithmetic operations, and a Higher-Order protocol that supports an authentication interaction step.
We present Lifty, a domain-specific language for data-centric applications that manipulate sensitive data. A Lifty programmer annotates the sources of sensitive data with declarative security policies, and the language statically and automatically ve rifies that the application handles the data according to the policies. Moreover, if verification fails, Lifty suggests a provably correct repair, thereby easing the programmer burden of implementing policy enforcing code throughout the application. The main insight behind Lifty is to encode information flow control using liquid types, an expressive yet decidable type system. Liquid types enable fully automatic checking of complex, data dependent policies, and power our repair mechanism via type-driven error localization and patch synthesis. Our experience using Lifty to implement three case studies from the literature shows that (1) the Lifty policy language is sufficiently expressive to specify many real-world policies, (2) the Lifty type checker is able to verify secure programs and find leaks in insecure programs quickly, and (3) even if the programmer leaves out all policy enforcing code, the Lifty repair engine is able to patch all leaks automatically within a reasonable time.
Dependently typed languages such as Coq are used to specify and verify the full functional correctness of source programs. Type-preserving compilation can be used to preserve these specifications and proofs of correctness through compilation into the generated target-language programs. Unfortunately, type-preserving compilation of dependent types is hard. In essence, the problem is that dependent type systems are designed around high-level compositional abstractions to decide type checking, but compilation interferes with the type-system rules for reasoning about run-time terms. We develop a type-preserving closure-conversion translation from the Calculus of Constructions (CC) with strong dependent pairs ($Sigma$ types)---a subset of the core language of Coq---to a type-safe, dependently typed compiler intermediate language named CC-CC. The central challenge in this work is how to translate the source type-system rules for reasoning about functions into target type-system rules for reasoning about closures. To justify these rules, we prove soundness of CC-CC by giving a model in CC. In addition to type preservation, we prove correctness of separate compilation.
This paper presents LWeb, a framework for enforcing label-based, information flow policies in database-using web applications. In a nutshell, LWeb marries the LIO Haskell IFC enforcement library with the Yesod web programming framework. The implement ation has two parts. First, we extract the core of LIO into a monad transformer (LMonad) and then apply it to Yesods core monad. Second, we extend Yesods table definition DSL and query functionality to permit defining and enforcing label-based policies on tables and enforcing them during query processing. LWebs policy language is expressive, permitting dynamic per-table and per-row policies. We formalize the essence of LWeb in the $lambda_{LWeb}$ calculus and mechanize the proof of noninterference in Liquid Haskell. This mechanization constitutes the first metatheoretic proof carried out in Liquid Haskell. We also used LWeb to build a substantial web site hosting the Build it, Break it, Fix it security-oriented programming contest. The site involves 40 data tables and sophisticated policies. Compared to manually checking security policies, LWeb imposes a modest runtime overhead of between 2% to 21%. It reduces the trusted code base from the whole application to just 1% of the application code, and 21% of the code overall (when counting LWeb too).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا