ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km

66   0   0.0 ( 0 )
 نشر من قبل Ka Ming Tsui
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7 (7.6)$times 10^{20}$ protons on target in neutrino (antineutrino) mode. A selection of neutral current interaction samples are also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3+1 model was found from a simultaneous fit to the charged-current muon, electron and neutral current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude $sin^2theta_{24}$ for the sterile neutrino mass splitting $Delta m^2_{41}<3times 10^{-3}$ eV$^2/c^4$.



قيم البحث

اقرأ أيضاً

140 - K. Abe , J. Adam , H. Aihara 2014
The T2K experiment has performed a search for $ u_e$ disappearance due to sterile neutrinos using $5.9 times 10^{20}$ protons on target for a baseline of $280 m$ in a neutrino beam peaked at about $500 MeV$. A sample of u_e CC interactions in the of f-axis near detector has been selected with a purity of 63% and an efficiency of 26%. The p-value for the null hypothesis is 0.085 and the excluded region at 95% CL is approximately $sin^2 2 theta_{ee} > 0.3$ for $Delta m^2_{eff} > 7 eV^2 / c^4$.
124 - K. Abe , R. Akutsu , A. Ali 2019
This paper reports on the search for heavy neutrinos with masses in the range $140 < M_N < 493$ MeV/c$^2$ using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are $N to ell^{pm}_{alpha} pi^{mp}$ and $N to ell^+_{alpha} ell^-_{beta} u (bar u)$ ($alpha,beta=e,mu$). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heavy neutrinos to electron-, muon- and tau- flavoured currents ($U_e^2$, $U_{mu}^2$, $U_{tau}^2$) as a function of the heavy neutrino mass, e.g. $U_e^2 < 10^{-9}$ at $90%$ C.L. for a mass of $390$ MeV/c$^2$. These constraints are competitive with previous experiments.
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both these searches we assume that the sterile mass splitting is large, allowing $sin^2(Delta m^2 L/4E)$ to be approximated as $0.5$, and we assume that there is no mixing between electron neutrinos and sterile neutrinos ($|U_{e4}|^2 = 0$). No evidence of sterile oscillations is seen and we limit $|U_{mu4}|^2$ to less than 0.041 and $|U_{tau4}|^2$ to less than 0.18 for $Delta m^2 > 0.8$ eV$^2$ at the 90% C.L. in a 3+1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3+N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.
GUT monopoles captured by the Suns gravitation are expected to catalyze proton decays via the Callan-Rubakov process. In this scenario, protons, which initially decay into pions, will ultimately produce u_{e}, u_{mu} and bar{ u}_{mu}. After undergo ing neutrino oscillation, all neutrino species appear when they arrive at the Earth, and can be detected by a 50,000 metric ton water Cherenkov detector, Super-Kamiokande (SK). A search for low energy neutrinos in the electron total energy range from 19 to 55 MeV was carried out with SK and gives a monopole flux limit of F_M(sigma_0/1 mb) < 6.3 times 10^{-24} (beta_M/10^{-3})^2 cm^{-2} s^{-1} sr^{-1} at 90% C.L., where beta_M is the monopole velocity in units of the speed of light and sigma_0 is the catalysis cross section at beta_M=1. The obtained limit is more than eight orders of magnitude more stringent than the current best cosmic-ray supermassive monopole flux limit, F_M < 1 times 10^{-15} cm^{-2} s^{-1} sr^{-1} for beta_M < 10^{-3} and also two orders of magnitude lower than the result of the Kamiokande experiment, which used a similar detection method.
We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande -I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best fit antineutrino mixing is found to be at (dm2bar, sin2 2 thetabar) = (2.0x10^-3 eV^2, 1.0) and is consistent with the overall Super-K measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا