ترغب بنشر مسار تعليمي؟ اضغط هنا

Level shift and decay dynamics of a quantum emitter around plasmonic nanostructure

105   0   0.0 ( 0 )
 نشر من قبل Yonggang Huang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We put forward a general approach for calculating the quantum energy level shift for emitter in arbitrary nanostructures, in which the energy level shift is expressed by the sum of the real part of the scattering photon Green function (GF) and a simple integral about the imaginary part of the photon GF in the real frequency range without principle value. Compared with the method of direct principal value integral over the positive frequency axis and the method by transferring into the imaginary axis, this method avoids the principle value integral and the calculation of the scattering GF with imaginary frequency. In addition, a much narrower frequency range about the scattering photon GF in enough to get a convergent result. It is numerically demonstrated in the case for a quantum emitter (QE) located around a nanosphere and in a gap plasmonic nanocavity. Quantum dynamics of the emitter is calculated by the time domain method through solving Schr{o}dinger equation in the form of Volterra integral of the second kind and by the frequency domain method based on the Greens function expression for the evolution operator. It is found that the frequency domain method needs information of the scattering GF over a much narrower frequency range. In addition, reversible dynamics is observed. These findings are instructive in the fields of coherent light-matter interactions.



قيم البحث

اقرأ أيضاً

A bound state between a quantum emitter (QE) and surface plasmon polaritons (SPPs) can be formed, where the QE is partially stabilized in its excited state. We put forward a general approach for calculating the energy level shift at a negative freque ncy $omega$, which is just the negative of the nonresonant part for the energy level shift at positive frequency $-omega$. We also propose an efficient formalism for obtaining the long-time value of the excited-state population without calculating the eigenfrequency of the bound state or performing a time evolution of the system, in which the probability amplitude for the excited state in the steady limit is equal to one minus the integral of the evolution spectrum over the positive frequency range. With the above two quantities obtained, we show that the non-Markovian decay dynamics in the presence of a bound state can be obtained by the method based on the Greens function expression for the evolution operator. A general criterion for identifying the existence of a bound state is presented. These are numerically demonstrated for a QE located around a nanosphere and in a gap plasmonic nanocavity. These findings are instructive in the fields of coherent light-matter interactions.
We investigate the nonlinear optical response of a four-level double-V-type quantum system interacting with a pair of weak probe fields while located near a two-dimensional array of metal-coated dielectric nanospheres. Such a quantum system contains a V-type subsystem interacting with surface plasmons, and another V-type subsystem interacting with the free-space vacuum. A distinctive feature of the proposed setup is its sensitivity to the relative phase of the applied fields when placed near the plasmonic nanostructure. We demonstrate that due to the presence of the plasmonic nanostructure, the third-order (Kerr-type) susceptibility for one of the laser fields can be significantly modified while another probe field is acting. Moreover, the Kerr nonlinearity of the system can be controlled and even enhanced by varying the distance of the quantum system from the plasmonic nanostructure.We also show that the Kerr nonlinearity of such a system can be controlled by adjusting the relative phase of the applied fields. The results obtained may find potential applications in on-chip nanoscale photonic devices. We also study the light-matter interaction in the case where one probe field carries an optical vortex, and another probe field has no vortex. We demonstrate that due to the phase sensitivity of the closed-loop double V-type quantum system, the linear and nonlinear susceptibility of the nonvortex probe beam depends on the azimuthal angle and orbital angular momentum (OAM) of the vortex probe beam. This feature is missing in open four-level double V-type quantum system interacting with free-space vacuum, as no quantum interference occurs in this case. We use the azimuthal dependence of optical susceptibility of the quantum system to determine the regions of spatially-structured transmittance.
We investigate the reduction of the electromagnetic field fluctuations in resonance fluorescence from a single emitter coupled to an optical nanostructure. We find that such hybrid system can lead to the creation of squeezed states of light, with qua ntum fluctuations significantly below the shot noise level. Moreover, the physical conditions for achieving squeezing are strongly relaxed with respect to an emitter in free space. A high degree of control over squeezed light is feasible both in the far and near fields, opening the pathway to its manipulation and applications on the nanoscale with state-of-the-art setups.
101 - Pai Peng , Yong-Chun Liu , Da Xu 2017
Localized-surface plasmon resonance is of importance in both fundamental and applied physics for the subwavelength confinement of optical field, but realization of quantum coherent processes is confronted with challenges due to strong dissipation. He re we propose to engineer the electromagnetic environment of metallic nanoparticles (MNPs) using optical microcavities. An analytical quantum model is built to describe the MNP-microcavity interaction, revealing the significantly enhanced dipolar radiation and consequentially reduced Ohmic dissipation of the plasmonic modes. As a result, when interacting with a quantum emitter, the microcavity-engineered MNP enhances the quantum yield over 40 folds and the radiative power over one order of magnitude. Moreover, the system can enter the strong coupling regime of cavity quantum electrodynamics, providing a promising platform for the study of plasmonic quantum electrodynamics, quantum information processing, precise sensing and spectroscopy.
We measure the dynamics of a non-classical optical field using two-time second-order correlations in conjunction with pulsed excitation. The technique quantifies single-photon purity and coherence during the excitation-decay cycle of an emitter, illu strated here using a quantum dot. We observe that for certain pump wavelengths, photons detected early in the cycle have reduced single-photon purity and coherence compared to those detected later. A model indicates that the single-photon purity dynamics are due to exciton recapture after initial emission and within the same pulse cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا