ﻻ يوجد ملخص باللغة العربية
Theories with several hundred axion fields have enormous numbers of distinct meta-stable minima. A small fraction of these local minima have vacuum energy compatible with current measurements of dark energy. The potential also contains regions suitable for inflation, and gives rise to a natural type of dark matter. First-order phase transitions from one minimum to the vicinity of another play the role of big bangs and produce many bubbles containing evolving Friedmann-Lemaitre-Robertson-Walker universes. The great majority either collapse in a tiny fraction of a second, or expand exponentially forever as empty, structureless universes. However, restricting to those bubble universes that form non-linear structure at some time in their history we find cosmologies that look remarkably similar to ours. They undergo about 60 efolds of inflation, making them flat, homogeneous and isotropic, and endowing them with a nearly scale-invariant spectrum of primordial density perturbations with roughly the observed magnitude and tilt. They reheat after inflation to a period of radiation domination, followed by matter domination with roughly the observed abundance, followed by vacuum energy domination at roughly the observed density. None of these features require any model building or small parameters. Instead, all dimensionful parameters in the theory can be set equal to the grand unified scale 0.01 M_p, and the dimensionless parameters are order one and can be chosen randomly. The small value of dark energy ultimately comes from non-perturbative gravitational effects, giving an exponentially small vacuum energy density. Therefore, random axion landscapes can account for many of the apparently tuned features of our universe, including its current enormous size, age, and tiny energy densities compared to the scales of fundamental physics.
We study a model of the emergent dark universe, which lives on the time-like hypersurface in a five-dimensional bulk spacetime. The holographic fluid on the hypersurface is assumed to play the role of the dark sector, mainly including the dark energy
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black holes event horizon. We argue that this picture provides a nat
Motivated by string dualities we propose topological gravity as the early phase of our universe. The topological nature of this phase naturally leads to the explanation of many of the puzzles of early universe cosmology. A concrete realization of thi
Structure in the Universe is widely believed to have originated from quantum fluctuations during an early epoch of accelerated expansion. Yet, the patterns we observe today do not distinguish between quantum or classical primordial fluctuations; curr