ترغب بنشر مسار تعليمي؟ اضغط هنا

The maximum a posteriori probability rule for atom column detection from HAADF STEM images

106   0   0.0 ( 0 )
 نشر من قبل Sandra Van Aert
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.



قيم البحث

اقرأ أيضاً

Over the last decade, scanning transmission electron microscopy (STEM) has emerged as a powerful tool for probing atomic structures of complex materials with picometer precision, opening the pathway toward exploring ferroelectric, ferroelastic, and c hemical phenomena on the atomic-scale. Analyses to date extracting a polarization signal from lattice coupled distortions in STEM imaging rely on discovery of atomic positions from intensity maxima/minima and subsequent calculation of polarization and other order parameter fields from the atomic displacements. Here, we explore the feasibility of polarization mapping directly from the analysis of STEM images using deep convolutional neural networks (DCNNs). In this approach, the DCNN is trained on the labeled part of the image (i.e., for human labelling), and the trained network is subsequently applied to other images. We explore the effects of the choice of the descriptors (centered on atomic columns and grid-based), the effects of observational bias, and whether the network trained on one composition can be applied to a different one. This analysis demonstrates the tremendous potential of the DCNN for the analysis of high-resolution STEM imaging and spectral data and highlights the associated limitations.
AtomAI is an open-source software package bridging instrument-specific Python libraries, deep learning, and simulation tools into a single ecosystem. AtomAI allows direct applications of the deep convolutional neural networks for atomic and mesoscopi c image segmentation converting image and spectroscopy data into class-based local descriptors for downstream tasks such as statistical and graph analysis. For atomically-resolved imaging data, the output is types and positions of atomic species, with an option for subsequent refinement. AtomAI further allows the implementation of a broad range of image and spectrum analysis functions, including invariant variational autoencoders (VAEs). The latter consists of VAEs with rotational and (optionally) translational invariance for unsupervised and class-conditioned disentanglement of categorical and continuous data representations. In addition, AtomAI provides utilities for mapping structure-property relationships via im2spec and spec2im type of encoder-decoder models. Finally, AtomAI allows seamless connection to the first principles modeling with a Python interface, including molecular dynamics and density functional theory calculations on the inferred atomic position. While the majority of applications to date were based on atomically resolved electron microscopy, the flexibility of AtomAI allows straightforward extension towards the analysis of mesoscopic imaging data once the labels and feature identification workflows are established/available. The source code and example notebooks are available at https://github.com/pycroscopy/atomai.
65 - J. Cui , Y. Yao , Y. G. Wang 2017
The effects of the tilt of the crystallographic orientation with respect to an incident electron probe on high-angle annular dark field (HAADF) imaging in aberration-corrected scanning transmission electron microscopy (STEM) have been investigated wi th experiments and simulations. A small specimen tilt can lead to unequal deviations of different atom species in the HAADF image and result in further relative displacement between anions and cations. Simulated HAADF images also confirm that the crystal tilt causes an artifact in atom polarization as well. The effect is derived from the scattering ability of different atoms.
An approach for the analysis of atomically resolved scanning transmission electron microscopy data with multiple ferroic variants in the presence of imaging non-idealities and chemical variabilities based on a rotationally invariant variational autoe ncoder (rVAE) is presented. We show that an optimal local descriptor for the analysis is a sub-image centered at specific atomic units, since materials and microscope distortions preclude the use of an ideal lattice as a reference point. The applicability of unsupervised clustering and dimensionality reduction methods is explored and are shown to produce clusters dominated by chemical and microscope effects, with a large number of classes required to establish the presence of rotational variants. Comparatively, the rVAE allows extraction of the angle corresponding to the orientation of ferroic variants explicitly, enabling straightforward identification of the ferroic variants as regions with constant or smoothly changing latent variables and sharp orientational changes. This approach allows further exploration of the chemical variability by separating the rotational degrees of freedom via rVAE and searching for remaining variability in the system. The code used in the manuscript is available at https://github.com/saimani5/ferroelectric_domains_rVAE.
Selection of the correct convergence angle is essential for achieving the highest resolution imaging in scanning transmission electron microscopy (STEM). Use of poor heuristics, such as Rayleighs quarter-phase rule, to assess probe quality and uncert ainties in measurement of the aberration function result in incorrect selection of convergence angles and lower resolution. Here, we show that the Strehl ratio provides an accurate and efficient to calculate criteria for evaluating probe size for STEM. A convolutional neural network trained on the Strehl ratio is shown to outperform experienced microscopists at selecting a convergence angle from a single electron Ronchigram using simulated datasets. Generating tens of thousands of simulated Ronchigram examples, the network is trained to select convergence angles yielding probes on average 85% nearer to optimal size at millisecond speeds (0.02% human assessment time). Qualitative assessment on experimental Ronchigrams with intentionally introduced aberrations suggests that trends in the optimal convergence angle size are well modeled but high accuracy requires extensive training datasets. This near immediate assessment of Ronchigrams using the Strehl ratio and machine learning highlights a viable path toward rapid, automated alignment of aberration-corrected electron microscopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا