ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Deep Learning of GMMs

103   0   0.0 ( 0 )
 نشر من قبل Shirin Jalali
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a collection of Gaussian mixture models (GMMs) in $R^{n}$ can be optimally classified using $O(n)$ neurons in a neural network with two hidden layers (deep neural network), whereas in contrast, a neural network with a single hidden layer (shallow neural network) would require at least $O(exp(n))$ neurons or possibly exponentially large coefficients. Given the universality of the Gaussian distribution in the feature spaces of data, e.g., in speech, image and text, our result sheds light on the observed efficiency of deep neural networks in practical classification problems.



قيم البحث

اقرأ أيضاً

122 - Jihun Hamm , Yung-Kyun Noh 2018
Minimax optimization plays a key role in adversarial training of machine learning algorithms, such as learning generative models, domain adaptation, privacy preservation, and robust learning. In this paper, we demonstrate the failure of alternating g radient descent in minimax optimization problems due to the discontinuity of solutions of the inner maximization. To address this, we propose a new epsilon-subgradient descent algorithm that addresses this problem by simultaneously tracking K candidate solutions. Practically, the algorithm can find solutions that previous saddle-point algorithms cannot find, with only a sublinear increase of complexity in K. We analyze the conditions under which the algorithm converges to the true solution in detail. A significant improvement in stability and convergence speed of the algorithm is observed in simple representative problems, GAN training, and domain-adaptation problems.
We identify an implicit under-parameterization phenomenon in value-based deep RL methods that use bootstrapping: when value functions, approximated using deep neural networks, are trained with gradient descent using iterated regression onto target va lues generated by previous instances of the value network, more gradient updates decrease the expressivity of the current value network. We characterize this loss of expressivity in terms of a drop in the rank of the learned value network features, and show that this corresponds to a drop in performance. We demonstrate this phenomenon on widely studies domains, including Atari and Gym benchmarks, in both offline and online RL settings. We formally analyze this phenomenon and show that it results from a pathological interaction between bootstrapping and gradient-based optimization. We further show that mitigating implicit under-parameterization by controlling rank collapse improves performance.
Why and how that deep learning works well on different tasks remains a mystery from a theoretical perspective. In this paper we draw a geometric picture of the deep learning system by finding its analogies with two existing geometric structures, the geometry of quantum computations and the geometry of the diffeomorphic template matching. In this framework, we give the geometric structures of different deep learning systems including convolutional neural networks, residual networks, recursive neural networks, recurrent neural networks and the equilibrium prapagation framework. We can also analysis the relationship between the geometrical structures and their performance of different networks in an algorithmic level so that the geometric framework may guide the design of the structures and algorithms of deep learning systems.
Multi-task learning (MTL) is a common paradigm that seeks to improve the generalization performance of task learning by training related tasks simultaneously. However, it is still a challenging problem to search the flexible and accurate architecture that can be shared among multiple tasks. In this paper, we propose a novel deep learning model called Task Adaptive Activation Network (TAAN) that can automatically learn the optimal network architecture for MTL. The main principle of TAAN is to derive flexible activation functions for different tasks from the data with other parameters of the network fully shared. We further propose two functional regularization methods that improve the MTL performance of TAAN. The improved performance of both TAAN and the regularization methods is demonstrated by comprehensive experiments.
In this paper, we establish a theoretical comparison between the asymptotic mean-squared error of Double Q-learning and Q-learning. Our result builds upon an analysis for linear stochastic approximation based on Lyapunov equations and applies to both tabular setting and with linear function approximation, provided that the optimal policy is unique and the algorithms converge. We show that the asymptotic mean-squared error of Double Q-learning is exactly equal to that of Q-learning if Double Q-learning uses twice the learning rate of Q-learning and outputs the average of its two estimators. We also present some practical implications of this theoretical observation using simulations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا