ترغب بنشر مسار تعليمي؟ اضغط هنا

A semi-analytical perspective on massive galaxies at $zsim0.55$

60   0   0.0 ( 0 )
 نشر من قبل Doris Stoppacher
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The most massive and luminous galaxies in the Universe serve as powerful probes to study the formation of structure, the assembly of mass, and cosmology. However, their detailed formation and evolution is still barely understood. Here we extract a sample of massive mock galaxies from the semi-analytical model of galaxy formation (SAM) GALACTICUS from the MultiDark-Galaxies, by replicating the CMASS photometric selection from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The comparison of the GALACTICUS CMASS-mock with BOSS-CMASS data allows us to explore different aspects of the massive galaxy population at $0.5<z<0.6$, including the galaxy-halo connection and the galaxy clustering. We find good agreement between our modelled galaxies and observations regarding the galaxy-halo connection, but our CMASS-mock over-estimates the clustering amplitude of the 2-point correlation function, due to a smaller number density compared to BOSS, a lack of blue objects, and a small intrinsic scatter in stellar mass at fixed halo mass of $<0.1$ dex. To alleviate this problem, we construct an alternative mock catalogue mimicking the CMASS colour-magnitude distribution by randomly down-sampling the SAM catalogue. This CMASS-mock reproduces the clustering of CMASS galaxies within 1$sigma$ and shows some environmental dependency of star formation properties that could be connected to the quenching of star formation and the assembly bias.



قيم البحث

اقرأ أيضاً

Massive galaxy clusters are now found as early as 3 billion years after the Big Bang, containing stars that formed at even earlier epochs. The high-redshift progenitors of these galaxy clusters, termed protoclusters, are identified in cosmological si mulations with the highest dark matter overdensities. While their observational signatures are less well defined compared to virialized clusters with a substantial hot intra-cluster medium (ICM), protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts. Recent claimed detections of protoclusters hosting such starbursts do not support the kind of rapid cluster core formation expected in simulations because these structures contain only a handful of starbursting galaxies spread throughout a broad structure, with poor evidence for eventual collapse into a protocluster. Here we report that the source SPT2349-56 consists of at least 14 gas-rich galaxies all lying at z = 4.31 based on sensitive observations of carbon monoxide and ionized carbon. We demonstrate that each of these galaxies is forming stars between 50 and 1000 times faster than our own Milky Way, and all are located within a projected region only $sim$ 130 kiloparsecs in diameter. This galaxy surface density is more than 10 times the average blank field value (integrated over all redshifts) and $>$1000 times the average field volume density. The velocity dispersion ($sim$ 410 km s$^{-1}$) of these galaxies and enormous gas and star formation densities suggest that this system represents a galaxy cluster core at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 is a uniquely massive and dense system that could be building one of the most massive structures in the Universe today.
We report the likely identification of a substantial population of massive M~10^11M_Sun galaxies at z~4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey. The obser ved spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000AA breaks, relatively old stellar populations, large stellar masses and low SFRs, with a median specific SFR of 2.9+/-1.8 x 10^-11/yr. Ultradeep Herschel/PACS 100micron, 160micron and Spitzer/MIPS 24micron data reveal no dust-obscured SFR activity for 15/19 (79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the SED fit, indicating independently that the average specific SFR is at least 10x smaller than of typical star-forming galaxies at z~4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8+/-0.7 x 10^-5Mpc^-3 to a limit of log10M/M_Sun>10.6, which is 10x and 80x lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (~35%) of z~4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8Gyr and stellar mass of 0.8x10^11M_Sun, the galaxies likely started forming stars before z =5, with SFRs well in excess of 100M_Sun/yr, far exceeding that of similarly abundant UV-bright galaxies at z>4. This suggests that most of the star-formation in the progenitors of quiescent z~4 galaxies was obscured by dust.
370 - C. Scarlata 2015
We present a Semi-Analytical Line Transfer model, SALT, to study the absorption and re-emission line profiles from expanding galactic envelopes. The envelopes are described as a superposition of shells with density and velocity varying with the dista nce from the center. We adopt the Sobolev approximation to describe the interaction between the photons escaping from each shell and the remaining of the envelope. We include the effect of multiple scatterings within each shell, properly accounting for the atomic structure of the scattering ions. We also account for the effect of a finite circular aperture on actual observations. For equal geometries and density distributions, our models reproduce the main features of the profiles generated with more complicated transfer codes. Also, our SALT line profiles nicely reproduce the typical asymmetric resonant absorption line profiles observed in star-forming/starburst galaxies whereas these absorption profiles cannot be reproduced with thin shells moving at a fixed outflow velocity. We show that scattered resonant emission fills in the resonant absorption profiles, with a strength that is different for each transition. Observationally, the effect of resonant filling depends on both the outflow geometry and the size of the outflow relative to the spectroscopic aperture. Neglecting these effects will lead to incorrect values of gas covering fraction and column density. When a fluorescent channel is available, the resonant profiles alone cannot be used to infer the presence of scattered re-emission. Conversely, the presence of emission lines of fluorescent transitions reveals that emission filling cannot be neglected.
328 - Adam Muzzin 2009
Using a sample of nine massive compact galaxies at z ~ 2.3 with rest-frame optical spectroscopy and comprehensive U through 8um photometry we investigate how assumptions in SED modeling change the stellar mass estimates of these galaxies, and how thi s affects our interpretation of their size evolution. The SEDs are fit to Tau-models with a range of metallicities, dust laws, as well as different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual & Charlot (2003); however, using models with updated treatment of TP-AGB stars the fits are poorer. The two-component models predict masses that are 0.08 to 0.22 dex larger than the Tau-models. We also test the effect of a bottom-light IMF and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the Tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.
In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshift s and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. We first confirm that a population of massive, compact, star forming galaxies exists at z~2, using K-band spectroscopy of 25 of these objects at 2.0<z<2.5. They have a median NII/Halpha ratio of 0.6, are highly obscured with SFR(tot)/SFR(Halpha)~10, and have a large range of observed line widths. We infer from the kinematics and spatial distribution of Halpha that the galaxies have rotating disks of ionized gas that are a factor of ~2 more extended than the stellar distribution. By combining measurements of individual galaxies, we find that the kinematics are consistent with a nearly Keplerian fall-off from V_rot~500 km/s at 1 kpc to V_rot~250 km/s at 7 kpc, and that the total mass out to this radius is dominated by the dense stellar component. Next, we study the size and mass evolution of the progenitors of compact massive galaxies. Even though individual galaxies may have had complex histories with periods of compaction and mergers, we show that the population of progenitors likely followed a simple inside-out growth track in the size-mass plane of d(log r_e) ~ 0.3 d(log M_stars). This mode of growth gradually increases the stellar mass within a fixed physical radius, and galaxies quench when they reach a stellar density or velocity dispersion threshold. As shown in other studies, the mode of growth changes after quenching, as dry mergers take the galaxies on a relatively steep track in the size-mass plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا