ﻻ يوجد ملخص باللغة العربية
In the present work, we explore the possibility of developing rogue waves as exact solutions of some nonlinear dispersive equations, such as the nonlinear Schrodinger equation, but also, in a similar vein, the Hirota, Davey-Stewartson, and Zakharov models. The solutions that we find are ones previously identified through different methods. Nevertheless, they highlight an important aspect of these structures, namely their self-similarity. They thus offer an alternative tool in the very sparse (outside of the inverse scattering method) toolbox of attempting to identify analytically (or computationally) rogue wave solutions. This methodology is importantly independent of the notion of integrability. An additional nontrivial motivation for such a formulation is that it offers a frame in which the rogue waves are stationary. It is conceivable that in this frame one could perform a proper stability analysis of the structures.
Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrodinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of
We present a theoretical study of extreme events occurring in phononic lattices. In particular, we focus on the formation of rogue or freak waves, which are characterized by their localization in both spatial and temporal domains. We consider two exa
We unveil a mechanism enabling a fundamental rogue wave, expressed by a rational function of fourth degree, to reach a peak amplitude as high as a thousand times the background level in a system of coupled nonlinear Schru007fodinger equations involvi
Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable attention, particularly in recent years. The one space, one time (1+1) nonlinear Schrodinger equation is often used to model rogue waves; it is an envelo
In this work, we numerically consider the initial value problem for nonlinear Schrodinger (NLS) type models arising in the physics of ultracold boson gases, with generic Gaussian wavepacket initial data. The corresponding Gaussians width and, whereve