ﻻ يوجد ملخص باللغة العربية
In this note, we give a brief overview of the telescope conjecture and the chromatic splitting conjecture in stable homotopy theory. In particular, we provide a proof of the folklore result that Ravenels telescope conjecture for all heights combined is equivalent to the generalized telescope conjecture for the stable homotopy category, and explain some similarities with modular representation theory.
We calculate the homotopy type of $L_1L_{K(2)}S^0$ and $L_{K(1)}L_{K(2)}S^0$ at the prime 2, where $L_{K(n)}$ is localization with respect to Morava $K$-theory and $L_1$ localization with respect to $2$-local $K$ theory. In $L_1L_{K(2)}S^0$ we find a
In this short review we describe some aspects of $kappa$-deformation. After discussing the algebraic and geometric approaches to $kappa$-Poincare algebra we construct the free scalar field theory, both on non-commutative $kappa$-Minkowski space and o
We calculate the rational homotopy and the K(1)-local homotopy of the K(2)-local sphere at the prime 3 and level 2. We use this to verify the chromatic splitting conjecture in this case.
We discuss how to construct models of interacting anyons by generalizing quantum spin Hamiltonians to anyonic degrees of freedom. The simplest interactions energetically favor pairs of anyons to fuse into the trivial (identity) channel, similar to th
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia