ترغب بنشر مسار تعليمي؟ اضغط هنا

Heating-Induced Long-Range $eta$-Pairing in the Hubbard Model

95   0   0.0 ( 0 )
 نشر من قبل Joseph Tindall
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady-states with long-range correlations between $eta$-pairs. With induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal $eta$-correlations. These correlations were first recognised in the superconducting eigenstates in Yangs seminal paper [Phys. Rev. Lett 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism.



قيم البحث

اقرأ أيضاً

We show that optical excitation of the Mott insulating phase of the one-dimensional Hubbard model can create a state possessing two of the hallmarks of superconductivity: a nonvanishing charge stiffness and long-ranged pairing correlation. By employi ng the exact diagonalization method, we find that the superposition of the $eta$-pairing eigenstates induced by the optical pump exhibits a nonvanishing charge stiffness and a pairing correlation that decays very slowly with system size in sharp contrast to the behavior of an ensemble of thermally excited eigenstates, which has a vanishing charge stiffness and no long-ranged pairing correlations. We show that the charge stiffness is indeed directly associated with the $eta$-pairing correlation in the Hubbard model. Our finding demonstrates that optical pumping can actually lead to superconducting-like properties on the basis of the $eta$-pairing states.
By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairin g mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of $eta$ pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram and also provides an alternative mechanism for enhancing superconductivity.
226 - J. Kajala , F. Massel , 2011
Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator s tate is considered. We analyze the simulation results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our findings describe essential features of a recent experiment on the expansion of a Fermi gas in a two-dimensional lattice. We show that the Hubbard-dimer dynamics, combined with a two-fluid model for the paired and non-paired components of the gas, gives an efficient description of the full dynamics. This should be useful for describing dynamical phenomena of strongly interacting Fermions in a lattice in general.
The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studyi ng the models phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can efficiently prepare antiferromagnetic order in present-day experiments with ultracold fermions. The core of the approach is to add incoherent laser scattering in such a way that the antiferromagnetic state emerges as the dark state of the driven-dissipative dynamics. In order to elucidate the development of the antiferromagnetic order we employ two complementary techniques: Monte Carlo wave function simulations for small systems and a recently proposed variational method for open quantum systems, operating in the thermodynamic limit. The controlled dissipation channels described in this work are straightforward to add to already existing experimental setups.
176 - Jun Goryo , Nobuki Maeda 2011
We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا