ﻻ يوجد ملخص باللغة العربية
We study a family of generalizations of Edge Dominating Set on directed graphs called Directed $(p,q)$-Edge Dominating Set. In this problem an arc $(u,v)$ is said to dominate itself, as well as all arcs which are at distance at most $q$ from $v$, or at distance at most $p$ to $u$. First, we give significantly improved FPT algorithms for the two most important cases of the problem, $(0,1)$-dEDS and $(1,1)$-dEDS (that correspond
Given a graph $G=(V,E)$, the dominating set problem asks for a minimum subset of vertices $Dsubseteq V$ such that every vertex $uin Vsetminus D$ is adjacent to at least one vertex $vin D$. That is, the set $D$ satisfies the condition that $|N[v]cap D
We show that there is no deterministic local algorithm (constant-time distributed graph algorithm) that finds a $(7-epsilon)$-approximation of a minimum dominating set on planar graphs, for any positive constant $epsilon$. In prior work, the best low
We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g.,
The Windows Scheduling Problem, also known as the Pinwheel Problem, is to schedule periodic jobs subject to their processing frequency demands. Instances are given as a set of jobs that have to be processed infinitely often such that the time interva
The Minimum Dominating Set (MDS) problem is not only one of the most fundamental problems in distributed computing, it is also one of the most challenging ones. While it is well-known that minimum dominating sets cannot be approximated locally on gen