ﻻ يوجد ملخص باللغة العربية
We report non-equilibrium magnetodynamics in the Rashba-superconductor GeTe, which lacks inversion symmetry in the bulk. We find that at low temperature the system exhibits a non-equilibrium state, which decays on time scales that exceed conventional electronic scattering times by many orders of magnitude. This reveals a non-equilibrium magnetoresponse that is asymmetric under magnetic field reversal and, strikingly, induces a non-equilibrium superconducting state distinct from the equilibrium one. We develop a model of a Rashba system where non-equilibrium configurations relax on a finite timescale which captures the qualitative features of the data. We also obtain evidence for the slow dynamics in another non-superconducting Rashba system. Our work provides novel insights into the dynamics of non-centrosymmetric superconductors and Rashba systems in general.
Electrical resistivity, specific heat and NMR measurements classify non-centrosymmetric $rm Mo_3Al_2C$ ($beta$-Mn type, space group $P4_132$) as a strong-coupled superconductor with $T_c = 9$~K deviating notably from BCS-like behaviour. The absence o
We report the discovery of superconductivity in pressurized CeRhGe3, until now the only remaining non-superconducting member of the isostructural family of non-centrosymmetric heavy-fermion compounds CeTX3 (T = Co, Rh, Ir and X = Si, Ge). Superconduc
Layered non-centrosymmetric bismuth tellurohalides are being examined as candidates for topological insulators. Pressure is believed to be essential for inducing and tuning topological order in these systems. Through electrical transport and Raman sc
In the recently discovered antiperovskite phosphide (Ca,Sr)Pd$_3$P, centrosymmetric (CS) and non-centrosymmetric (NCS) superconducting phases appear depending on the Sr concentration, and their transition temperatures ($T_mathrm{c}$) differ by as muc
Superconductivity and magnetism in the non-centrosymmetric heavy fermion compound CePt$_3$Si and related materials are theoretically investigated. Based on the randam phase approximation (RPA) analysis for the extended Hubbard model we describe the h