ﻻ يوجد ملخص باللغة العربية
A and F stars can be used as probes of outer Galactic disk kinematics: here we extend the work of Harris et al. (2018) by crossmatching their A/F sample with Gaia DR2 to bring in proper motions. These are combined with the already measured radial velocities and spectro-photometric distances to obtain full space motions. We use this sample of 1173 stars, located in two pencil-beam sightlines (l=178deg and l=118deg), to sample the Galactocentric velocity field out to almost R_G=15 kpc. We find there are significant differences in all three (radial, azimuthal and vertical) kinematic components between the two directions. The rotation curve is roughly flat in the anticentre direction, confirming and extending the result of Kawata et al. (2018a) thanks to the greater reach of our spectro-photometric distance scale. However at l=118deg the circular velocity rises outwards from R_G=10.5 kpc and there is a more pronounced gradient in radial motion than is seen at l=178deg. Furthermore, the A star radial motion differs from the F stars by ~10 km/s. We discuss our findings in the context of perturbers potentially responsible for the trends, such as the central bar, spiral arms, the warp and external satellites. Our results at l=178deg are broadly consistent with previous work on K giants in the anticentre, but the kinematics at l=118deg in the Perseus region do not yet reconcile easily with bar or spiral arm perturbation.
Previous studies of the rotation law in the outer Galactic disc have mainly used gas tracers or clump giants. Here, we explore A and F stars as alternatives: these provide a much denser sampling in the outer disc than gas tracers and have experienced
We use the Pristine survey CaHK narrow-band photometry, combined with the SDSS ugr photometry, to provide a cleaner sample of blue horizontal branch stars in the Galactic halo out to large distances. We demonstrate a completeness of 91% and a purity
The orbits of the least chemically enriched stars open a window on the formation of our Galaxy when it was still in its infancy. The common picture is that these low-metallicity stars are distributed as an isotropic, pressure-supported component sinc
We report measurements of parallax and proper motion for four 22 GHz water maser sources as part of VERA Outer Rotation Curve project. All sources show Galactic latitudes of $>$ 2$^{circ}$ and Galactocentric distances of $>$ 11 kpc at the Galactic lo
We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities