ﻻ يوجد ملخص باللغة العربية
In the following work, we pedagogically develop 5-vector theory, an evolution of scalar field theory that provides a stepping stone toward a Poincare-invariant lattice gauge theory. Defining a continuous flat background via the four-dimensional Cartesian coordinates ${x^a}$, we `lift the generators of the Poincare group so that they transform only the fields existing upon ${x^a}$, and do not transform the background ${x^a}$ itself. To facilitate this effort, we develop a non-unitary particle representation of the Poincare group, replacing the classical scalar field with a 5-vector matter field. We further augment the vierbein into a new $5times5$ funfbein, which `solders the 5-vector field to ${x^a}$. In so doing, we form a new intuition for the Poincare symmetries of scalar field theory. This effort recasts `spacetime data, stored in the derivatives of the scalar field, as `matter field data, stored in the 5-vector field itself. We discuss the physical implications of this `Poincare lift, including the readmittance of an absolute reference frame into relativistic field theory. In a companion paper, we demonstrate that this theoretical development, here construed in a continuous universe, enables the description of a discrete universe that preserves the 10 infinitesimal Poincare symmetries and their conservation laws.
The following work demonstrates the viability of Poincare symmetry in a discrete universe. We develop the technology of the discrete principal Poincare bundle to describe the pairing of (1) a hypercubic lattice `base manifold labeled by integer verti
We use our previously developed identification of dispersion relations with Hamilton functions on phase space to locally implement the $kappa$-Poincare dispersion relation in the momentum spaces at each point of a generic curved spacetime. We use thi
In this paper we excavate, for the first time, the most general class of conformal Killing vectors, that lies in the two dimensional subspace described by the null and radial co-ordinates, that are admitted by the generalised Vaidya geometry. Subsequ
A Z3 symmetric generalization of the Dirac equation was proposed in recent series of papers, where its properties and solutions discussed. The generalized Dirac operator acts on coloured spinors composed out of six Pauli spinors, describing three col
Within the electroweak theory, it is shown that the form of the total Lagrangian is invariant, under local phase changes of the basis states for leptons and under local changes of the mathematical spaces employed for the description of left-handed sp