ﻻ يوجد ملخص باللغة العربية
We provide a new interpretation for the Bayes factor combination used in the Dark Energy Survey (DES) first year analysis to quantify the tension between the DES and Planck datasets. The ratio quantifies a Bayesian confidence in our ability to combine the datasets. This interpretation is prior-dependent, with wider prior widths boosting the confidence. We therefore propose that if there are any reasonable priors which reduce the confidence to below unity, then we cannot assert that the datasets are compatible. Computing the evidence ratios for the DES first year analysis and Planck, given that narrower priors drop the confidence to below unity, we conclude that DES and Planck are, in a Bayesian sense, incompatible under LCDM. Additionally we compute ratios which confirm the consensus that measurements of the acoustic scale by the Baryon Oscillation Spectroscopic Survey (SDSS) are compatible with Planck, whilst direct measurements of the acceleration rate of the Universe by the SHOES collaboration are not. We propose a modification to the Bayes ratio which removes the prior dependency using Kullback-Leibler divergences, and using this statistical test find Planck in strong tension with SHOES, in moderate tension with DES, and in no tension with SDSS. We propose this statistic as the optimal way to compare datasets, ahead of the next DES data releases, as well as future surveys. Finally, as an element of these calculations, we introduce in a cosmological setting the Bayesian model dimensionality, which is a parameterisation-independent measure of the number of parameters that a given dataset constrains.
We discuss how to efficiently and reliably estimate the level of agreement and disagreement on parameter determinations from different experiments, fully taking into account non-Gaussianities in the parameter posteriors. We develop two families of sc
Cosmological tensions can arise within $Lambda$CDM scenario amongst different observational windows, which may indicate new physics beyond the standard paradigm if confirmed by measurements. In this article, we report how to alleviate both the $H_0$
We investigate constraints on some key cosmological parameters by confronting metastable dark energy models with different combinations of the most recent cosmological observations. Along with the standard $Lambda$CDM model, two phenomenological meta
We demonstrate a measure for the effective number of parameters constrained by a posterior distribution in the context of cosmology. In the same way that the mean of the Shannon information (i.e. the Kullback-Leibler divergence) provides a measure of
The late-time modifications of the standard $Lambda$ Cold Dark Matter ($Lambda$CDM) cosmological model can be parameterized by three time-dependent functions describing the expansion history of the Universe and gravitational effects on light and matt