ترغب بنشر مسار تعليمي؟ اضغط هنا

OConnor, Alvarez, and Robbins Reply to Xu et al. (arXiv:1808.05390)

76   0   0.0 ( 0 )
 نشر من قبل Thomas C. O'Connor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The preceding Comment by Xu et al. (Phys. Rev. Lett. 122, 059803 (2019); arXiv:1808.05390) erroneously applies the entropic stress expression in our Letter (T.C. OConnor et al., Phys. Rev. Lett. 121, 047801 (2018); arXiv:1806.09509) to transient stress. In addition, the authors only apply this expression at extreme extension rates where we clearly showed deviations from the entropic stress expression for steady-state extensional flow. Hence the surprisingly minor discrepancies noted in the Comment between observed and predicted stress are entirely expected and have no bearing on the discussion or conclusions in our Letter.



قيم البحث

اقرأ أيضاً

In a comment on arXiv:1006.5070v1, Drechsler et al. present new band-structure calculations suggesting that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interactio n, in contradiction with their previous calculations. In our reply, we show that their new results are at odds with the observed magnetic structure, that their analysis of the static susceptibility neglects important contributions, and that their criticism of the spin-wave analysis of the bound-state dispersion is unfounded. We further show that their new exact diagonalization results reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
In a comment on arXiv:1006.5070v2, Drechsler et al. claim that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous work. Their comment is based on DMRG and ED calculations of the magnetization curve and the magnetic excitations. We show that their parameters are at odds with the magnetic susceptibility and the magnetic excitation spectrum, once intensities are taken into account, and that the magnetization curve cannot discriminate between largely different parameter sets within experimental uncertainties. We further show that their new exact diagonalization results support the validity of the RPA-approach, and strongly reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
Howes et al. Reply to Comment on Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas arXiv:0711.4355
Riess et al (2018c) have claimed there exist seven problems in the analyses presented by Shanks et al (2018) where we argue that there is enough uncertainty in Cepheid distances and local peculiar velocity fields to explain the current tension in $H_ 0$. Here, we take each of the Riess et al (2018c) points in turn and suggest that either they do not apply or that the necessary caveats are already made by Shanks et al (2018). We conclude that the main point to be inferred from our analyses still stands which is that previous claims by Riess et al (2018b) that Gaia parallaxes confirm their Cepheid scale are, at best, premature in advance of further improvements in the Gaia astrometric solution.
In their Comment [arXiv:2102.03842], Haas et al. advance two hypotheses on the nature of the shape transformations observed in surfactant-stabilized emulsion droplets, as the theoretical models that us [Phys. Rev. Lett. 126, 038001 (2021)] and others [P. A. Haas et al. Phys. Rev. Lett. 118, 088001 (2017), Phys. Rev. Research 1, 023017 (2019)] have introduced to account for these observations. (1) Because of the different surfactants used in experimental studies, the physical mechanisms underpinning the shape transformations may, in fact, differ in spite of the extraordinary resemblance in the output. (2) The theoretical models are mathematically equivalent by virtue of the small magnitude of the stretching and gravitational energies. In this Reply, we argue that neither of these hypotheses is well justified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا