ﻻ يوجد ملخص باللغة العربية
Calcium silicate perovskite (CaSiO$_3$) is one of the major mineral components of the lower mantle, but has been the subject of relatively little work compared to the more abundant Mg-based materials. One of the major problems related to CaSiO$_3$ that is still the subject of research is its crystal structure under lower mantle conditions - a cubic Pm$bar{3}$m structure is accepted in general, but some have suggested that lower-symmetry structures may be relevant. In this paper, we use a fully first-principles vibrational self-consistent field method to perform high accuracy anharmonic vibrational calculations on several candidate structures at a variety of points along the geotherm near the base of the lower mantle to investigate the stability of the cubic structure and related distorted structures. Our results show that the cubic structure is the most stable throughout the lower mantle, and that this result is robust against the effects of thermal expansion.
We performed a first-principles study of the structural, vibrational, electronic and magnetic properties of NaMnF3 under applied isotropic pressure. We found that NaMnF3 undergoes a reconstructive phase transition at 8 GPa from the Pnma distorted per
The molybdate oxides SrMoO$_3$, PbMoO$_3$, and LaMoO$_3$ are a class of metallic perovskites that exhibit interesting properties including high mobility, and unusual resistivity behavior. We use first-principles methods based on density functional th
We use textit{ab initio} molecular dynamics simulations to investigate the properties of the dry surface of pure silica and sodium silicate glasses. The surface layers are defined based on the atomic distributions along the direction ($z-$direction)
NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) textit{ab initio} calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate minera
This article reports the study of SnO by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). We have calculated the structural, elastic, electronic and optical of SnO under high pressure.