ﻻ يوجد ملخص باللغة العربية
While more and more antennas are integrated into single mobile user equipment to increase communication quality and throughput, the number of antennas used for transmission is commonly restricted due to the concerns on hardware complexity and energy consumption, making it impossible to achieve the maximum channel capacity. This paper investigates the problem of reconstructing the full downlink channel from incomplete uplink channel measurements in Massive MIMO systems. We present ARDI, a scheme that builds a bridge between the radio channel and physical signal propagation environment to link spatial information about the non-transmitting antennas with their radio channels. By inferring locations and orientations of the non-transmitting antennas from an incomplete set of uplink channels, ARDI can reconstruct the downlink channels for non-transmitting antennas. We derive a closed-form solution to reconstruct antenna orientation in both single-path and multi-path propagation environments. The performance of ARDI is evaluated using simulations with realistic human movement. The results demonstrate that ARDI is capable of accurately reconstructing full downlink channels when the signal-to-noise ratio is higher than 15dB, thereby expanding the channel capacity of Massive MIMO networks.
Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can b
In this paper, we propose a novel method for efficient implementation of a massive Multiple-Input Multiple-Output (massive MIMO) system with Frequency Division Duplexing (FDD) operation. Our main objective is to reduce the large overhead incurred by
In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receiv
Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, wh
The gains afforded by cloud radio access network (C-RAN) in terms of savings in capital and operating expenses, flexibility, interference management and network densification rely on the presence of high-capacity low-latency fronthaul connectivity be