ﻻ يوجد ملخص باللغة العربية
The next generation of observatories will facilitate the discovery of new types of astrophysical transients. The detection of such phenomena, whose characteristics are presently poorly constrained, will hinge on the ability to perform blind searches. We present a new algorithm for this purpose, based on deep learning. We incorporate two approaches, utilising anomaly detection and classification techniques. The first is model-independent, avoiding the use of background modelling and instrument simulations. The second method enables targeted searches, relying on generic spectral and temporal patterns as input. We compare our methodology with the existing approach to serendipitous detection of gamma-ray transients. The algorithm is shown to be more robust, especially for non-trivial spectral features. We use our framework to derive the detection prospects of low-luminosity gamma-ray bursts with the upcoming Cherenkov Telescope Array. Our method is an unbiased, completely data-driven approach for multiwavelength and multi-messenger transient detection.
The next generation of observatories will facilitate the discovery of new types of astrophysical transients. The detection of such phenomena, whose characteristics are presently poorly constrained, will hinge on the ability to perform blind searches.
Ground-based $gamma$-ray observatories, such as the VERITAS array of imaging atmospheric Cherenkov telescopes, provide insight into very-high-energy (VHE, $mathrm{E}>100,mathrm{GeV}$) astrophysical transient events. Examples include the evaporation o
The primary challenge in the study of explosive astrophysical transients is their detection and characterisation using multiple messengers. For this purpose, we have developed a new data-driven discovery framework, based on deep learning. We demonstr
There is a shortage of multi-wavelength and spectroscopic followup capabilities given the number of transient and variable astrophysical events discovered through wide-field, optical surveys such as the upcoming Vera C. Rubin Observatory. From the ha
The follow-up of external science alerts received from Gamma-Ray Bursts (GRB) and Gravitational Waves (GW) detectors is one of the AGILE Teams current major activities. The AGILE team developed an automated real-time analysis pipeline to analyse AGIL