A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arvesons Dilation Problem to the negative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.