ﻻ يوجد ملخص باللغة العربية
We consider the design of a fair sensor schedule for a number of sensors monitoring different linear time-invariant processes. The largest average remote estimation error among all processes is to be minimized. We first consider a general setup for the max-min fair allocation problem. By reformulating the problem as its equivalent form, we transform the fair resource allocation problem into a zero-sum game between a judge and a resource allocator. We propose an equilibrium seeking procedure and show that there exists a unique Nash equilibrium in pure strategy for this game. We then apply the result to the sensor scheduling problem and show that the max-min fair sensor scheduling policy can be achieved.
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algo
We consider pricing and selection with fading channels in a Stackelberg game framework. A channel server decides the channel prices and a client chooses which channel to use based on the remote estimation quality. We prove the existence of an optimal
Recent advances in the blockchain research have been made in two important directions. One is refined resilience analysis utilizing game theory to study the consequences of selfish behaviors of users (miners), and the other is the extension from a li
Floating operation is very critical in power management in hard disk drive (HDD), during which no control command is applied to the read/write head but a fixed current to counteract actuator flex bias. External disturbance induced drift of head may r
In small-cell wireless networks where users are connected to multiple base stations (BSs), it is often advantageous to switch off dynamically a subset of BSs to minimize energy costs. We consider two types of energy cost: (i) the cost of maintaining