ﻻ يوجد ملخص باللغة العربية
Pegase.3 is a Fortran 95 code modeling the spectral evolution of galaxies from the far-ultraviolet to submillimeter wavelengths. It also follows the chemical evolution of their stars, gas and dust. For a given scenario (a set of parameters defining the history of mass assembly, the star formation law, the initial mass function...), Pegase.3 consistently computes the following: * the star formation, infall, outflow and supernova rates from 0 to 20 Gyr; * the stellar metallicity, the abundances of main elements in the gas and the composition of dust; * the unattenuated stellar spectral energy distribution (SED); * the nebular SED, using nebular continua and emission lines precomputed with code Cloudy (Ferland et al. 2017); * the attenuation in star-forming clouds and the diffuse interstellar medium, by absorption and scattering on dust grains, of the stellar and nebular SEDs. For this, the code uses grids of the transmittance for spiral and spheroidal galaxies. We precomputed these grids through Monte Carlo simulations of radiative transfer based on the method of virtual interactions; * the re-emission by grains of the light they absorbed, taking into account stochastic heating. The main innovation compared to Pegase.2 is the modeling of dust emission and its evolution. The computation of nebular emission has also been entirely upgraded to take into account metallicity effects and infrared lines. Other major differences are that complex scenarios of evolution (derived for instance from cosmological simulations), with several episodes of star formation, infall or outflow, may now be implemented, and that the detailed evolution of the most important elements -- not only the overall metallicity -- is followed.
We provide here the documentation of the new version of the spectral evolution model PEGASE. PEGASE computes synthetic spectra of galaxies in the UV to near-IR range from 0 to 20 Gyr, for a given stellar IMF and evolutionary scenario (star formation
Aspects ([asp{epsilon}], ASsociation PositionnellE/ProbabilistE de CaTalogues de Sources in French) is a Fortran 95 code for the cross-identification of astrophysical sources. Its source files are freely available. Given the coordinates and positio
We present PEGASE-HR, a new stellar population synthesis program generating high resolution spectra (R=10 000) over the optical range lambda=400--680 nm. It links the spectro-photometric model of galaxy evolution PEGASE.2 (Fioc & Rocca-Volmerange 199
Upcoming HI surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize HI objects is imperative. In this context, visualization is an es
Star forming galaxies represent a small yet sizable fraction of the X-ray sky (1%-20%, depending on the flux). X-ray surveys allow to derive their luminosity function and evolution, free from uncertainties due to absorption. However, much care must b