ترغب بنشر مسار تعليمي؟ اضغط هنا

HD101584: Circumstellar characteristics and evolutionary status

122   0   0.0 ( 0 )
 نشر من قبل Hans Olofsson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a study of the characteristics of the circumstellar environment of the binary object HD101584, that provides information on a likely evolutionary scenario. We have obtained and analysed ALMA observations, complemented with observations using APEX, of a large number of molecular lines. An analysis of the spectral energy distribution has also been performed. Emissions from 12 molecular species (not counting isotopologues) have been observed, and most of them mapped with angular resolutions in the range 0.1 to 0.6. Four circumstellar components are identified: i) a central compact source of size 0.15, ii) an expanding equatorial density enhancement (a flattened density distribution in the plane of the orbit) of size 3, iii) a bipolar high-velocity outflow (150 km/s), and iv) an hourglass structure. The outflow is directed almost along the line of sight. There is evidence of a second bipolar outflow. The mass of the circumstellar gas is 0.5[D/1 kpc]^2 Msun, about half of it lies in the equatorial density enhancement. The dust mass is 0.01[D/1 kpc]^2 Msun, and a substantial fraction of this is in the form of large-sized, up to 1 mm, grains. The estimated kinetic age of the outflow is 770[D/1 kpc] yr. The kinetic energy and the scalar momentum of the accelerated gas are estimated to be 7x10^(45)[D/1 kpc]^2 erg and 10^(39)[D/1 kpc]^2 g cm/s, respectively. We provide good evidence that the binary system HD101584 is in a post-common-envelope-evolution phase, that ended before a stellar merger. Isotope ratios combined with stellar mass estimates suggest that the primary stars evolution was terminated already on the first red giant branch (RGB). Most of the energy required to drive the outflowing gas was probably released when material fell towards the companion.



قيم البحث

اقرأ أيضاً

Aims. The magnetic star HD148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC6164/5), an ellipsoidal w ind-blown shell, and a spherically symmetric Stromgren sphere. The exact formation process of this nebula and its precise relation to the stars evolution remain unknown. Methods. We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD148937 using the CMFGEN atmosphere code. Results. The H$alpha$ image displays a bipolar or 8-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC6164. Interestingly, the parts of the nebula located further from HD148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured $sim$1.2-1.3 and $sim$0.6 Myrs ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger.
From Gaia DR 2 data of eight high velocity hot post-AGB candidates LS 3593, LSE 148, LS 5107, HD 172324, HD 214539, LS IV -12 111, LS III +52 24, and LS 3099, we found that six of them have accurate parallaxes which made it possible to derive their d istances, absolute visual magnitudes (M_V) and luminosity (log L/L_sun). Except LS 5107 all the remaining seven stars have accurate effective temperature (T_eff) in the literature. Some of these stars are metal-poor and some of them do not have circumstellar dust shells. In the past the distances of some stars were estimated to be 6~kpc which we find it to be incorrect. The accurate Gaia DR2 parallaxes show that they are relatively nearby post-AGB stars. When compared with post-AGB evolutionary tracks we find their initial masses in the range of 1M_sun to 2M_sun. We find the luminosity of LSE 148 to be significantly lower than that of post-AGB stars, suggesting that this is a post-horizontal branch star or post-early-AGB star. LS 3593 and LS 5107 are new high velocity hot post-AGB stars from Gaia DR2.
110 - Rene D. Oudmaijer 2013
Disks are ubiquitous in stellar astronomy, and play a crucial role in the formation and evolution of stars. In this contribution we present an overview of the most recent results, with emphasis on high spatial and spectral resolution. We will start w ith a general discussion on direct versus indirect detection of disks, and then traverse the HR diagram starting with the pre-Main Sequence and ending with evolved stars.
New spectroscopic observations of the LBV/WR multiple system HD5980 in the Small Magellanic Cloud are used to address the question of the masses and evolutionary status of the two very luminous stars in the 19.3d eclipsing binary system. Two distinct components of the N V 4944 A line are detected in emission and their radial velocity variations are used to derive masses of 61 and 66 Mo, under the assumption that binary interaction effects on this atomic transition are negligible. We propose that this binary system is the product of quasi-chemically homogeneous evolution with little or no mass transfer. Thus, both of these binary stars may be candidates for gamma-ray burst progenitors or even pair instability supernovae. Analysis of the photospheric absorption lines belonging to the third-light object in the system confirm that it consists of an O-type star in a 96.56d eccentric orbit (e=0.82) around an unseen companion. The 5:1 period ratio and high eccentricities of the two binaries suggest that they may constitute a hierarchical quadruple system.
High-mass X-ray binaries (HMXBs) are exceptional astrophysical laboratories that offer a rare glimpse into the physical processes that govern accretion on compact objects, massive-star winds, and stellar evolution. In a subset of the HMXBs, the compa ct objects accrete matter solely from winds of massive donor stars. These so-called wind-fed HMXBs are divided in persistent HMXBs and supergiant fast X-ray transients (SFXTs) according to their X-ray properties. While it has been suggested that this dichotomy depends on the characteristics of stellar winds, they have been poorly studied. With this investigation, we aim to remedy this situation by systematically analyzing donor stars of wind-fed HMXBs that are observable in the UV, concentrating on those with neutron star (NS) companions. We obtained Swift X-ray data, HST UV spectra, and additional optical spectra for all our targets. Our multi-wavelength approach allows us to provide stellar and wind parameters for six donor stars (four wind-fed systems and two OBe X-ray binaries). The wind properties are in line with the predictions of the line-driven wind theory. Three of the donor stars are in an advanced evolutionary stage, while for some of the stars, the abundance pattern indicates that processed material might have been accreted. When passing by the NS in its tight orbit, the donor star wind has not yet reached its terminal velocity but it is still significantly slower; its speed is comparable with the orbital velocity of the NS companion. There are no systematic differences between the two types of wind-fed HMXBs (persistent versus transients) with respect to the donor stars. For the SFXTs in our sample, the orbital eccentricity is decisive for their transient X-ray nature. Based on the orbital parameters and the further evolution of the donor stars, the investigated HMXBs will presumably form Thorne-.Zytkow objects in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا