ﻻ يوجد ملخص باللغة العربية
Thin coatings of Chromium oxide have been used for applications as absorbing material in solar cells, as protections for magnetic data recording devices and as shields in flexible solar cells. Thin coatings of pure chromium were vacuum deposited on a glass substrate using hot electrons from tungsten filament. These coatings were then treated with a nanosecond and femtosecond laser in ambient conditions. The microstructure, morphology and the color of the coatings treated with laser sources were modified and there was a formation of an oxide layer due to the heat dissipation on the chromium coating from the energetic photons. High-resolution scanning electron microscope studies showed the morphological evolution that are directly correlated with the laser fluence of both the nanosecond and femtosecond lasers. This morphological evolution was accompanied by the microstructural change as observed from the x-ray diffraction patterns, the chromaticity response of the coating was studied by UV-Vis spectrometer and the response of the coating in the visible region evolved with the laser fluences. The Rutherford backscattering depth profiling of the laser treated coatings revealed the diffusion of oxygen atoms in the coating as a result of laser treatment fluence.
Space charge formation in chromium-compensated GaAs sensors is investigated by the laser-induced transient current technique applying pulsed and DC bias. Formation of non-standard space charge manifested by an appearance of both negatively and positi
We have engineered an antiferromagnetic domain wall by utilizing a magnetic frustration effect of a thin iron cap layer deposited on a chromium film. Through lithography and wet etching we selectively remove areas of the Fe cap layer to form a patter
Plasmonic color printing with semicontinuous metal films is a lithography-free, non-fading, and environment-friendly method of generation of bright colors. Such films are comprised of metal nanoparticles, which resonate at different wavelengths upon
High-order harmonic generation (HHG) from crystals offers a new source of coherent extreme ultraviolet (XUV) attosecond radiation.
Simultaneous measurements of hard X-ray by a Geiger counter and audible sound (10 Hz-20kHz) by a microphone from a thin water film in air were carried out under intense single and double pulse irradiations of femtosecond laser (35 fs, 800 nm, 1 kHz).