ﻻ يوجد ملخص باللغة العربية
The Cassini mission offered us the opportunity to monitor the seasonal evolution of Titans atmosphere from 2004 to 2017, i.e. half a Titan year. The lower part of the stratosphere (pressures greater than 10 mbar) is a region of particular interest as there are few available temperature measurements, and because its thermal response to the seasonal and meridional insolation variations undergone by Titan remains poorly known. In this study, we measure temperatures in Titans lower stratosphere between 6 mbar and 25 mbar using Cassini/CIRS spectra covering the whole duration of the mission (from 2004 to 2017) and the whole latitude range. We can thus characterize the meridional distribution of temperatures in Titans lower stratosphere, and how it evolves from northern winter (2004) to summer solstice (2017). Our measurements show that Titans lower stratosphere undergoes significant seasonal changes, especially at the South pole, where temperature decreases by 19 K at 15 mbar in 4 years.
We study the seasonal evolution of Titans lower stratosphere (around 15~mbar) in order to better understand the atmospheric dynamics and chemistry in this part of the atmosphere. We analysed Cassini/CIRS far-IR observations from 2006 to 2016 in order
The seasonal evolution of Saturns polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $mu$m thermal infrared spectroscopy. We construct a near-continuous record of
Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These inc
The planets with a radius $<$ 4 $R$$_oplus$ observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconf
We present a geomorphologic map of Titans polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic