ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo event generators for high energy particle physics event simulation

189   0   0.0 ( 0 )
 نشر من قبل Michael Seymour
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Monte Carlo event generators (MCEGs) are the indispensable workhorses of particle physics, bridging the gap between theoretical ideas and first-principles calculations on the one hand, and the complex detector signatures and data of the experimental community on the other hand. All collider physics experiments are dependent on simulated events by MCEG codes such as Herwig, Pythia, Sherpa, POWHEG, and MG5_aMC@NLO to design and tune their detectors and analysis strategies. The development of MCEGs is overwhelmingly driven by a vibrant community of academics at European Universities, who also train the next generations of particle phenomenologists. The new challenges posed by possible future collider-based experiments and the fact that the first analyses at Run II of the LHC are now frequently limited by theory uncertainties urge the community to invest into further theoretical and technical improvements of these essential tools. In this short contribution to the European Strategy Update, we briefly review the state of the art, and the further developments that will be needed to meet the challenges of the next generation.



قيم البحث

اقرأ أيضاً

In high-energy physics, Monte Carlo event generators (MCEGs) are used to simulate the interactions of high energy particles. MCEG event records store the information on the simulated particles and their relationships, and thus reflects the simulated evolution of physics phenomena in each collision event. We present the HepMC3 library, a next-generation framework for MCEG event record encoding and manipulation, which builds on the functionality of its widely-used predecessors to enable more sophisticated algorithms for event-record analysis. By comparison to previo
358 - F. Hautmann 2019
We discuss prospects for Monte Carlo event generators incorporating the dynamics of transverse momentum dependent (TMD) parton distribution functions. We illustrate TMD evolution in the parton branching formalism, and present Monte Carlo applications of the method.
139 - Gionata Luisoni 2013
In this talk the most recent results obtained by interfacing GoSam with external Monte Carlo event generators are presented and summarized. In the last year the automatic one-loop amplitude generator GoSam has been used for the computation of several processes relevant for the LHC physics program. In the first part of the talk the latest results are summarized and the status of the interfaces to several external Monte Carlo programs, based on the Binoth-Les-Houches-Accord, is reported. The second part is dedicated to two selected computations. One concerning the associated production of a Higgs and a vector boson in association with 0 and 1 jet computed with GoSam+Powheg, and one focusing on the analysis of the forward-backward asymmetry in the production of top quark pairs using 0 and 1 jet merged samples with GoSam+Sherpa. Finally some recent results on Beyond-Standard-Model physics are also presented.
This work presents novel discrete event-based simulation algorithms based on the Quantized State System (QSS) numerical methods. QSS provides attractive features for particle transportation processes, in particular a very efficient handling of discon tinuities in the simulation of continuous systems. We focus on High Energy Physics (HEP) particle tracking applications that typically rely on discrete time-based methods, and study the advantages of adopting a discrete event-based numerical approach that resolves efficiently the crossing of geometry boundaries by a traveling particle. For this purpose we follow two complementary strategies. First, a new co-simulation technique connects the Geant4 simulation toolkit with a standalone QSS solver. Second, a new native QSS numerical stepper is embedded into Geant4. We compare both approaches against the latest Geant4 default steppers in different HEP setups, including a complex real scenario (the CMS particle detector at CERN). Our techniques achieve relevant simulation speedups in a wide range of scenarios, particularly when the intensity of discrete-event handling dominates performance in the solving of the continuous laws of particle motion.
Review of Monte Carlo event generators for signals of new particles at LEP2. The areas covered include SUSY, HIGGS and Leptoquarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا