ﻻ يوجد ملخص باللغة العربية
We investigate the particle-number dependence of some features of the out-of-equilibrium dynamics of d-dimensional Fermi gases in the dilute regime. We consider protocols entailing the variation of the external potential which confines the particles within a limited spatial region, in particular sudden changes of the trap size. In order to characterize the dynamic behavior of the Fermi gas, we consider various global quantities such as the ground-state fidelity for different trap sizes, the quantum work statistics associated with the protocol considered, and the Loschmidt echo measuring the overlap of the out-of-equilibrium quantum states with the initial ground state. Their asymptotic particle-number dependences show power laws for noninteracting Fermi gases. We also discuss the effects of short-ranged interactions to the power laws of the average work and its square fluctuations, within the Hubbard model and its continuum limit, arguing that they do not generally change the particle-number power laws of the free Fermi gases, in any spatial dimensions.
We develop a general approach for calculating the characteristic function of the work distribution of quantum many-body systems in a time-varying potential, whose many-body wave function can be cast in the Slater determinant form. Our results are app
The rotation of two-component Fermi gases and the subsequent appearance of vortices have been the subject of numerous experimental and theoretical studies. Recent experimental advances in hyperfine state-dependent potentials and highly degenerate het
Non-analyticities in the logarithm of the Loschmidt echo, known as dynamical quantum phase transitions [DQPTs], are a recently introduced attempt to classify the myriad of possible phenomena which can occur in far from equilibrium closed quantum syst
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $hbar/tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with th
One of the most important applications of quantum mechanics is the thermodynamic description of quantum gases. Despite the fundamental importance of this topic, a comprehensive description of the thermodynamic properties of non-Hermitian quantum gase