Yule-Simpsons paradox in Galactic Archaeology


الملخص بالإنكليزية

Simpsons paradox, or Yule-Simpson effect, arises when a trend appears in different subsets of data but disappears or reverses when these subsets are combined. We describe here seven cases of this phenomenon for chemo-kinematical relations believed to constrain the Milky Way disk formation and evolution. We show that interpreting trends in relations, such as the radial and vertical chemical abundance gradients, the age-metallicity relation, and the metallicity-rotational velocity relation (MVR), can lead to conflicting conclusions about the Galaxy past if analyses marginalize over stellar age and/or birth radius. It is demonstrated that the MVR in RAVE giants is consistent with being always strongly negative, when narrow bins of [Mg/Fe] are considered. This is directly related to the negative radial metallicity gradients of stars grouped by common age (mono-age populations) due to the inside out disk formation. The effect of the asymmetric drift can then give rise to a positive MVR trend in high-[alpha/Fe] stars, with a slope dependent on a given surveys selection function and observational uncertainties. We also study the variation of lithium abundance, A(Li), with [Fe/H] of AMBRE:HARPS dwarfs. A strong reversal in the positive A(Li)-[Fe/H] trend of the total sample is found for mono-age populations, flattening for younger groups of stars. Dissecting by birth radius shows strengthening in the positive A(Li)-[Fe/H] trend, shifting to higher [Fe/H] with decreasing birth radius; these observational results suggest new constraints on chemical evolution models. This work highlights the necessity for precise age estimates for large stellar samples covering wide spatial regions.

تحميل البحث