ﻻ يوجد ملخص باللغة العربية
Quantum random-access look-up of a string of classical bits is a necessary ingredient in several important quantum algorithms. In some cases, the cost of such quantum random-access memory (qRAM) is the limiting factor in the implementation of the algorithm. In this paper we study the cost of fault-tolerantly implementing a qRAM. We construct and analyze generic families of circuits that function as a qRAM, discuss opportunities for qubit-time tradeoffs, and estimate their resource costs when embedded in a surface code.
We propose an all-linear-optical scheme to ballistically generate a cluster state for measurement-based topological fault-tolerant quantum computation using hybrid photonic qubits entangled in a continuous-discrete domain. Availability of near-determ
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
We estimate the resource requirements, the total number of physical qubits and computational time, required to compute the ground state energy of a 1-D quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of the system size and
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usual
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment. Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct ou