ﻻ يوجد ملخص باللغة العربية
The equivariant Kazhdan-Lusztig polynomial of a matroid was introduced by Gedeon, Proudfoot, and Young. Gedeon conjectured an explicit formula for the equivariant Kazhdan-Lusztig polynomials of thagomizer matroids with an action of symmetric groups. In this paper, we discover a new formula for these polynomials which is related to the equivariant Kazhdan-Lusztig polynomials of uniform matroids. Based on our new formula, we confirm Gedeons conjecture by the Pieri rule.
Motivated by the concepts of the inverse Kazhdan-Lusztig polynomial and the equivariant Kazhdan-Lusztig polynomial, Proudfoot defined the equivariant inverse Kazhdan-Lusztig polynomial for a matroid. In this paper, we show that the equivariant invers
The Kazhdan-Lusztig polynomial of a matroid was introduced by Elias, Proudfoot, and Wakefield [{it Adv. Math. 2016}]. Let $U_{m,d}$ denote the uniform matroid of rank $d$ on a set of $m+d$ elements. Gedeon, Proudfoot, and Young [{it J. Combin. Theory
Restricted Whitney numbers of the first kind appear in the combinatorial recursion for the matroid Kazhdan-Lusztig polynomials. In the special case of braid matroids (the matroid associated to the partition lattice, the complete graph, the type A Cox
We study equivalence classes relating to the Kazhdan-Lusztig mu(x,w) coefficients in order to help explain the scarcity of distinct values. Each class is conjectured to contain a crosshatch pair. We also compute the values attained by mu(x,w) for the permutation groups S_10 and S_11.
We study the equivariant oriented cohomology ring $h_T(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott-Samelson classes in $h_{T}(G/P)$ c